

Development Guide

EDFacts Shared State Solution

 Authors: Steven King
 Date: 19 July 2016
 Version: 0.3

Development Guide EDFacts Shared State Solution

Page i

Change History Log

Date Pages Summary of Changes Version Authorized By

5-Jan-2012 Initial Draft v0.1 Steven King

6-Aug-2014 Update staging package generic design,
specifically the Post Process procedure
design and name; and the email
generation. Email now includes the staged
table name and the reporting period
processed.

v0.2 Steven King

19-July-2016 Adding a new ‘Client Set Up’ section to the
document.

V0.3 Kathleen Browning

Development Guide EDFacts Shared State Solution

Page ii

Table of Contents
Table of Figures ... iv
Screen Shots ... iv
Introduction ... 1

System Overview .. 2
Objectives .. 3
Scope .. 3

Definitions ... 3
Technologies .. 3
Relation to the CEDS .. 4
Design Principles .. 4
Development Plan .. 5

Client Setup Procedures .. 5
Staging Table Design and Loading .. 6

Principles to table design .. 6
Generic Stage Loading Package Connection Managers ... 6
Generic Stage Loading Package ETL Variables ... 7
Generic Stage Loading Package ETL Flow Design ... 9

Submission Table Load and File Creation .. 24
Submission Table Design .. 24
Generic Submission Package Connection Managers .. 24
Generic Submission Package ETL Variables .. 27
Generic Submission Package ETL Flow Design .. 29
Utility Routines .. 54

Generic Package Configurations .. 58
“Core Connections” Package Configuration.. 60
“Package Specific” Package Configuration .. 60

SSIS Package Deployment ... 60
SSIS Logging and Event Handling ... 60

SSIS_ProcessLog Table .. 60
OnPreExecute Event Handler .. 61
OnPostExecute Event Handler ... 62
OnError Event Handler ... 63

Validation Reports – Submission Tables ... 65
Validation Reports – Staging Tables .. 70
System Monitoring and Management ... 70
Web Management System ... 70

Individual Client Configuration ... 70
Client Configuration Data Tables ... 70

EDFacts_Admin.StateConfig Table ... 70
EDFacts_Admin.StateCharacteristic Table ... 71
EDFacts_Admin.SubmissionFileCharacteristic Table ... 71
EDFacts_Admin.StateCodeTranslation Table .. 72
EDFacts_Admin.SSIS_Configuration Table ... 72

Managing State Code Set Translation Values ... 72
Individual Client Development and Customization Checklist .. 74

Managing Client Contributions .. 74

Development Guide EDFacts Shared State Solution

Page iii

Standards and Best Practices ... 74
Naming conventions .. 74
T-SQL procedure naming and comment conventions .. 74

Development Guide EDFacts Shared State Solution

Page iv

Table of Figures

Figure 1: Stage Loading Generic Variable List ... 7

Figure 2: Generic Stage Loading Package Control Flow .. 9

Figure 3: Stage Loading, Database Source Data, Typical Data Flow .. 12

Figure 4: Stage Loading, Excel Source Data, Typical Data Flow ... 15

Figure 5: Submission Loading Generic Package Control Flow ... 29

Figure 6: Submission Loading, Validate Source Data, Data Flow .. 33

Screen Shots

Screen 1: Stage Loading, Generic Connection Managers ... 6

Screen 2: Stage Loading Package, Set Package Defaults, General Information 10

Screen 3: Stage Loading Package, Set Package Defaults, Parameter Mapping 11

Screen 4: Stage Loading Package, Set Package Defaults, Result Set ... 11

Screen 5: Stage Loading Package, Delete Previously Staged Data, General Information.............. 11

Screen 6: Stage Loading Package, Delete Previously Staged Data, Parameter Mapping 12

Screen 7: Stage Loading, Source Data from Database, Read Source Records, Connection

Manager .. 13

Screen 8: Stage Loading, Source Data from Database, Count Records .. 14

Screen 9: Stage Loading, Source Data from Database, Write Staging Records, Connection

Manager .. 14

Screen 10: Stage Loading, Source Data from Database, Write Staging Records, Column

Mapping ... 15

Screen 11: Stage Loading, Excel Data Source, Project Properties .. 16

Screen 12: Stage Loading, Excel Source Data, Excel Source Connection, Connection

Manager .. 17

Screen 13: Stage Loading, Excel Source Data, Excel Source Connection, Columns 17

Screen 14: Stage Loading, Excel Source Data, Data Conversion ... 18

Screen 15: Stage Loading, Excel Data Source, Count Records ... 18

Screen 16: Stage Loading, Excel Data Source, Write Stage Records, Connection Manager 19

Screen 17: Stage Loading, Excel Source Data, Write Stage Data, Mappings 19

Screen 18: Stage Loading, Post Load Processing, General Information ... 20

Screen 19: Stage Loading, Post Load Processing, Parameter Mapping .. 21

Screen 20: Stage Loading, Update Email Log, Parameter Mapping ... 23

Screen 21: Stage Loading, Send Notification, Mail Settings ... 23

Screen 22: Stage Loading, Send Notification, Expressions ... 24

Screen 23: Submission Loading, Generic Connection Managers .. 25

Screen 24: Submission Loading, Connections, Mail Server ... 25

Development Guide EDFacts Shared State Solution

Page v

Screen 25: Submission Loading, Set Package Defaults, General Information 30

Screen 26: Submission Loading, Set Package Defaults, Parameter Mapping 31

Screen 27: Submission Loading, Set Package Defaults, Result Set .. 31

Screen 28: Submission Loading, Check-Create Directories, Script Settings 31

Screen 29: Submission Loading, Clear Previous Invalid Records, General Information 32

Screen 30: Submission Loading, Clear Previous Invalid Records, Parameter Mapping 32

Screen 31: Submission Loading, Validate Source Data, Columns... 37

Screen 32: Submission Loading, Validate Source Data, Bad Records Count................................... 37

‘Screen 33: Submission Loading, Validate Source Data, Write Invalid Records,

Connection Manager .. 38

Screen 34: Submission Loading, Validate Source Data, Write Invalid Records, Field

Mapping ... 38

Screen 35: Submission Loading, Get Invalid Records File Name, General Information 39

Screen 36: Submission Loading, Get Invalid Records File Name, Parameter Mapping 40

Screen 37: Submission Loading, Get Invalid Records File Name, Result Set 40

Screen 38: Submission Loading, Get Invalid Records Data Flow ... 40

Screen 39: Submission Loading, Get Invalid Records, Mappings ... 41

Screen 40: Submission Loading, Zip Invalid Records File ... 41

Screen 41: Submission Loading, Create Error Email Message, General Settings 42

Screen 42: Submission Loading, Conduct the ETL, General Information .. 45

Screen 43: Submission Loading, Conduct the ETL, Parameter Mapping .. 45

Screen 44: Submission Loading, Set File History, General Information .. 45

Screen 45: Submission Loading, Set File History, Parameter Mapping ... 46

Screen 46: Submission Loading, Write File Header, Data Flow .. 48

Screen 47: Submission Loading, Write File Header, Connection Manager 48

Screen 48: Submission Loading, Write File Header, Mappings .. 48

Screen 49: Submission Loading, Write File Data Records, Data Flow .. 49

Screen 50: Submission Loading, Write File Data Records, Connection Manager 50

Screen 51: Submission Loading, Write File Data Records, Mappings .. 50

Screen 52: Submission Loading, Zip Submission Files ... 51

Screen 53: Submission Loading, Create Success Email Message General Information 51

Screen 54: Submission Loading, Update Email Log, Parameter Mapping 54

Screen 55: Submission Loading, Send Notification, Mail Settings .. 54

Screen 56: Submission Loading, Send Notification, Expressions .. 54

Screen 57: Package Configuration Organizer ... 60

Screen 58: Logging and Event Handling, OnPreExecute Event, General Information 61

Screen 59: Logging and Event Handling, OnPreExecute Event, Expressions 61

Screen 60: Logging and Event Handling, OnPostExecute Event, General Information 62

Screen 61: Logging and Event Handling, OnPostExecute Event, Expressions 62

Screen 62: Logging and Event Handling, OnError Event, Data Flows .. 63

Screen 63: Logging and Event Handling, OnError Event, Update Email Script

Information .. 63

Screen 64: Logging and Event Handling, OnError Event, General Information 64

Development Guide EDFacts Shared State Solution

Page vi

Screen 65: Logging and Event Handling, OnError Event, Expressions ... 64

Development Guide EDFacts Shared State Solution

Page 1

Introduction

EDFacts is the US Education Department’s (USED) system for collecting the data

required for all USED elementary and secondary education offices and

programs. Every state is required to report EDFacts data electronically using the

file formats specified by the Department.

Traditionally, a state has a process that goes directly from their source data to the

EDFacts files. Many EDFacts coordinators put something together that they can

use, with little thought about sharing with others – no need, nor with thought

toward building robust monitoring and notification facilities. These state

systems often have sketchy or missing documentation.

Many states are having to redesign or rebuild an EDFacts solution due to the

replacement of the current EDFacts coordinator.

The EDFacts Shared State Solution (ES3) is a system states can use to create the

files required for EDFacts submission. It uses the standard Microsoft SQL Server

stack of applications and standardizes a significant portion of the process.

States can get and modify these processes for their custom needs, or engage ESP

to do the customization for them.

The ES3 is a solution built with these issues in mind. It is designed to include:

• Easy customization and adaptation processes for new states

• Robust design with systems for error catching, monitoring and tracking

• Process logging and monitoring

• Email notification for both success and error processing

• Standard tools and open design so it’s easily understood and modified

• Full documentation

Development Guide EDFacts Shared State Solution

Page 2

System Overview

The ES3 breaks the file creation process into several steps, end with the creation

of the EDFacts files.

Staging

EDFacts Submission Data

Unit Record Data

Aggregate Record Data

Database Source Data

SLDS Sourced Data

Submission FilesNon-Database Sources

Custom ETL to

Load Staging from

State Sources Common ETL to

Load Submission

Tables

Common ETL to

Create Submission

Files

Common Tables

in EDFacts Format

Common

Format Staging

Tables aligned

with CEDS

The submission files, in the bottom left corner of the diagram, have an identical

layout for all states.

ES3 builds a set of tables that mirror the structure of those files. These EDFacts

Submission tables have an identical structure for all states. Consequently the

ETL from these tables to the Submission Files is common for all.

The ES3 differs from previous solutions by introducing a set of unit or aggregate

staging tables (orange section in the middle) that are used to construct the

EDFacts Submission tables.

To the maximum degree possible, the ES3 standardizes the staging tables across

states. Some states may have aggregate source data while others have unit

records, but where the detail level is similar, the staging tables have a common

structure.

ES3 aligns the staging tables with the Common Education Data Standards where

that is possible. ES3 does use state codes for individual elements in the staging

tables.

By standardizing the staging table design, the ETL process to load the EDFacts

Submission tables is common across all state clients.

Where state customization is expected to occur, information has been extracted

out to be managed in simple configuration tables. For example, state codes, state

identifier and name, email configuration and staff to be notified, submission file

location, etc. are all stored in database tables to be used in the ETL processes.

Development Guide EDFacts Shared State Solution

Page 3

Customization of the ES3 occurs through the simple editing of these database

tables for a particular client and reporting period.

The ETL that reads source data and loads the staging tables must be customized

for each state. But even here, every effort is made to standardize where possible

and to build templates for each data load.

The staging load ETL processes still include standard process logging,

monitoring, and notification mechanisms of the Submission Load and File

Creation processes.

Objectives

The objective for this document is to provide documentation for how the ES3 is

being designed and developed.

The audience is twofold:

1) Developers – to provide guidance for their work and the processes to use

2) State EDFacts and Program Staff – to see where and how to modify if

required, and instill confidence that the system is being constructed properly.

Scope

The scope is a general description of the processes to be used and the design for

the core templates. It is not the details nor documentation for each of the actual

ETL processes in the system. Nor does this document go into the details of using

Visual Studio, the design of SSIS packages, nor SQL development.

Definitions

<to be expanded>

Technologies

The EDFacts Shared State Solution is built using a variety of technologies, all of

which are in the standard Microsoft stack. The tools include:

SQL Structured Query Language

SQL Server Microsoft SQL Server database engine

SSIS SQL Server Integration Services

SSRS SQL Server Reporting Services

T-SQL Microsoft’s version of the Structured Query Language

procedural programming language

C# The primary language used for scripting, a .NET language

Development Guide EDFacts Shared State Solution

Page 4

Relation to the CEDS

The Common Education Data Standards (CEDS) is an effort of the National

Center for Education Statistics to develop consistent definitions and uses for

education terms.

CEDS does have a logical data model, but that data model is for an operational

system; it is highly normalized.

The EDFacts Shared State Solution, both the staging tables and the submission

tables, are reporting data bases. They are tuned for the purpose of supporting

EDFacts and are “flattened” from a CEDS perspective. The EDFacts Shared State

Solution will use the definitions and option sets where ever they make sense.

Design Principles

There are a set of design principles that guide the way the system is developed

and deployed.

• EDFacts Shared State Solution is self-contained

• No modifications are required to existing data bases, ES3 only requires

read-only access to source data.

• The system writes to the file system only to write submission files or

invalid record reports

• The system only reads from the file system to retrieve data from non-

database sources, e.g. Excel

• Core connection information is shared across all packages, i.e. the

location of the EDFacts Database, and email server configuration

• Custom code is encapsulated in stored procedures to the maximum

degree practicable

• Users are notified of execution results via email

• Standard Microsoft SQL Server tools are used – no proprietary tools, add-

ons, or components

• The system will be designed and built with easy maintenance and

modification as goals

Development Guide EDFacts Shared State Solution

Page 5

Development Plan

ES3 is organized in two Visual Studio projects, one for staging table loads, and

one for submission table loads and file creation. The Stage Loading project is

custom for each state. The Submission Loading project components, on the other

hand, are common across all states.

Client Setup Procedures

1. We will need a SQL database named “EDFacts”. This can be on an existing data base server. Let
us know what version: 2008R2, 2012, 2014, etc.

2. We will need an instance of SQL Integration services (SSIS). This can be on the same server as
the one above or separate (same is preferred, but it doesn’t really matter.)

3. We will create SSIS packages that do the necessary ETL. The packages will be stored in the SSIS
repository on the SSIS server. Depending on the version of SQL, this will be either the MSDB or
SSISDB database on the SSIS Server.

4. We will customize the web front end application to run on an IIS server of your choice and
integrate with your security. Our web app will need access to the SQL servers above.

5. The SSIS SQL Server will need to have SQL Agent running. We will need to be able to create
Agent jobs that have a single step of running one of the SSIS packages from the repository
above. The SQL agent can use either our web app’s Service account or we can create a Proxy
account. The credential associated with the proxy, or the web app service account will require
all the necessary SQL access to query source systems and write to the EDFacts database.

6. We need a file server directory location where we will create and save the EDFacts submission
files. This directory must be accessible by the SSIS packages we run.

7. We will need workstations where the ESP staff can do our development work. We will want two
of these. These can be virtual machines. They will need to have the appropriate version of
Visual Studio (2008, 2012, 2014, etc.) and SQL Management Studio. They need a copy of Word
and Excel. There are some additional development tools that ESP will need to install on these-
we have those tools licensed for our use. These workstations need access to the internet via
port 80 to get to our TFS and for general internet queries.

8. We will use whatever VPN/RDC process you want us to use to remotely access these boxes. We
want to keep all data and query results inside your network.

9. The SQL servers and the work stations must be able to query the source data systems that hold
EDFacts data.

10. Start pulling together a list of the EDFacts submissions and where you currently get the data. We
can send you an Excel template if you don’t have something already. If you have stored
procedures, queries, or other processes documented then start pulling that information
together for us as well.

If you want separate Dev/Test/Prod environments, then multiply the above as appropriate. Dev and
Prod is probably sufficient. Building three environments for one or two WDE users seems like overkill.

In the meantime, on our side we will:

1. Get a SharePoint project site set up
2. Build a loose project plan into which we will need to add dates

Development Guide EDFacts Shared State Solution

Page 6

3. Get our tracking sheets together
4. Get a clean project built in TFS for your state that has all the Stage-to-submission packages

ready to deploy

Staging Table Design and Loading

<description>

Principles to table design

When the staging tables are put together for a state, the following set of design

principles are followed.

• Aligned with CEDS – the fields in the staging tables are aligned with

CEDS to the maximum degree possible.

• Submission file grouping – submission files have been grouped and the

staging tables designed to maximize their utility.

• State Specific fields for auditing/data review – states often have

information in their source data that are used to populate the standard

staging tables. We can add these custom fields to the end of the staging

table and use them during the stage data post processing to set the

standard values. These fields are not referenced during the Submission

Loading routines.

• EDFacts_LocalSource Schema – ES3 has a schema that holds data from

Excel, text files, and other non-database sources. These tables have the

same structure and layout as the original file source. The staging process

loads these first with little data manipulation, then loads the staging table

from there.

Generic Stage Loading Package Connection Managers

There are typically three connections used by a Stage Loading ETL package.

Screen 1: Stage Loading, Generic Connection Managers

EDFacts connects to the EDFacts data base and is the destination for data in the

Stage Loading packages.

Source Data Connection is the read only connection to the source system tables

or files for this package. This can be an ODBC connection for data coming from a

Development Guide EDFacts Shared State Solution

Page 7

database, or it can be a file data source for csv or other delimited text data. This

can be an Excel or Access data source if data are coming from those applications.

The Source Data Connection can renamed to something more meaningful as

needed.

The MailServer connection points to the email server from which the package

will send the summary email.

Generic Stage Loading Package ETL Variables

At minimum, a Stage Loading package will have the following variables.

Figure 1: Stage Loading Generic Variable List

These variables and their meaning are:

Variable Value Source Used By

BadRecordsCount Originally zero and may be
updated by the Data Flow or
Stage Data clean-up task

EmailMessageBody Default values set in the result
type task Updated in the
[Validation Failed] or [Validation
Succeeded] [Create Email] tasks

generate error email
message body, generate
success email message
body, send notification

EmailMessageCCLine Set when the Email is created
either as ErrorEmailCCLine or

SuccessEmailCCLine

send notification

EmailMessageFromLine Set in Set Package Defaults.
Read from StateConfig

send notification

Development Guide EDFacts Shared State Solution

Page 8

Variable Value Source Used By

EmailMessageSubject Default value of “<package
name> Failed” is set in the
package. Value gets updated in
[Create Email Message Text] or
[Create Success Email Text]

tasks

send notification

EmailMessageToLine Set when the Email is created
either as ErrorEmailToLine or
SuccessEmailToLine

send notification

ErrorEmailCCLine Default values set in the
package but exposed in the
“Package Specific” package
configuration. Editable at
runtime

Create Email Message Text

ErrorEmailToLine Default values set in the
package but exposed in the
“Package Specific” package
configuration. Editable at
runtime

Create Email Message Text

ReportingPeriod the reporting period covered by
the data for which this staging
routine applies

all the steps

RootFilePath read in from the state config
table in the Set Filepath routine

send notification

StagingTableName the name of the staging table
into which these data are written

Create Email Message Text

SuccessEmailCCLine Default values set in the
package but exposed in the
“Package Specific” package
configuration. Editable at
runtime

Create Email Message Text

SuccessEmailToLine Default values set in the
package but exposed in the
“Package Specific” package
configuration. Editable at
runtime

Create Email Message Text

SuccessRecordsCount The number of records read
from the source data. Set in the
Copy source records data flow
task

Create Email Message Text

Development Guide EDFacts Shared State Solution

Page 9

Generic Stage Loading Package ETL Flow Design

The generic stage loading package ETL flow process is shown below

Set Package
Defaults

Delete Previously
Staged Data

Copy Records to
Staging

Post Load
Processing

Update Email Log

Global Container

Send Notification

Build Email

1

2

3

4

5

6

7
8

9

Figure 2: Generic Stage Loading Package Control Flow

Each of the numbered items in the flow is discussed below.

The steps with green circled numbers do not require any modification from the

template for a specific EDFacts stage loading package. Only the yellow

numbered tasks need to be modified for a specific EDFacts staging table,

specifically:

• Delete Previously Staged Data (#3)

• Copy Records to Staging (#4)

• Post Load Processing (#5)

1. Global Container

The bulk of the work in the package is contained with a Sequence Container. We

do this so that if at any point the SSIS process fails, it will fail over to the final

tasks of updating the email log and sending notification. Without this container,

the user would never get notified in the event of a failure in the package

Development Guide EDFacts Shared State Solution

Page 10

No edits are required from the template.

2. Set Package Defaults

The first real task of the standard Stage Loading package is one that sets some of

the package variable defaults from the configuration data in the EDFacts_Admin

tables.

Screen 2: Stage Loading Package, Set Package Defaults, General Information

This is an Execute SQL Task. The ResultSet is a single row of data. Set the

connection to the EDFacts connection. The SQL Statement to store is:

 select
 storageDirectoryRootPath,
 emailMessageFromLine
 from EDFacts_Admin.StateConfig
 where reportingPeriod = ?

The question mark at the end indicates a parameter that will be passed to the

query at runtime.

Tell the system about package parameters using the Parameter Mapping menu

option.

Development Guide EDFacts Shared State Solution

Page 11

Screen 3: Stage Loading Package, Set Package Defaults, Parameter Mapping

In this example, map parameter 0 (the first “?” in the query – parameters use

zero-based numbering) to the variable User::ReportingPeriod.

The next step is to do something with the single row of data we receive.

Screen 4: Stage Loading Package, Set Package Defaults, Result Set

The query returns two fields. The data from the query should be saved to the

package variables User::RootFilePath and User::EMailMessageFromLine. These

variable values will be used later in the package processing.

3. Delete Previously Staged Data

The next task is to clear out any previously staged data for the selected reporting

period.

Screen 5: Stage Loading Package, Delete Previously Staged Data, General Information

This package won’t return any data so the ResultSet value is “None”.

In the case of the load Student Demographics package, the query is very simple.

 delete
 from EDFacts_Staging.Unit_StudentDemographics
 where schoolYear = ?

Development Guide EDFacts Shared State Solution

Page 12

If the data source is a text or Excel file, then the data are copied into a table in

EDFacts_LocalSource. It is that table that needs to be cleared in the query above.

We will clear the EDFacts_Staging table as part of the Post Load Processing step.

There is just 1 parameter, the schoolYear which is mapped to

User::ReportingPeriod.

Screen 6: Stage Loading Package, Delete Previously Staged Data, Parameter Mapping

This task does not return any data, so it is now complete

4. Copy Records to Staging

The “meat” of the Stage Loading packages is carried out in the next two tasks.

This Data Flow task is the one that will query the source system, count the

records, and write the data to the appropriate table.

Data typically come from 1 of two source types, either a database table accessible

to ES3 via an SSIS data connection, or an Excel or text file accessible via a file

system directory. The data flow task varies slightly between these two options.

a. Source Data From a Database

When the source data are in a data base table, ES3 uses an OLEDB connection

manager to link to the data. Using an SSIS Connection manager means ES3 does

not have to create a database link between the EDFacts database and the source

database. Such a connection could be a security hole.

The source database does need to be accessible to the SSIS package when it runs

from the EDFacts SSIS repository however.

The typically data flow is shown below.

Read Source
Records

Write Stage Data

Count Records

1

2

3

Figure 3: Stage Loading, Database Source Data, Typical Data Flow

Development Guide EDFacts Shared State Solution

Page 13

The typical flow consists of 1) reading the source data, 2) counting the resulting

records, and 3) saving the results. Steps 1 and 3 are by necessity custom for each

Stage Loading package; step 2 can remain unchanged.

a 1. Read Source Records

The first step in defining the Read Source Data step is to define the Connection

and query to use.

Screen 7: Stage Loading, Source Data from Database, Read Source Records, Connection Manager

Select an existing connection manager or create a New connection using the

[New…] button.

There are 4 modes available for data access, as shown in the drop-down list

above.

• Table or View – a simple selection of all records in the selected table or

view. The name is selected from a drop-down list after this selection is

made.

• Table name or view name variable – the name of the table or view to be

queried is stored in a package variable. The variable that holds the name

is selected from a drop-down list after this selection is made. That means

the variable must already exist and contain a valid table or view name.

• SQL Command – after making this selection, a larger text box will appear

where a SQL query command can be entered. You have the option of

building a query using the Query Builder. The query can contain

parameters – enter as “?”s and define on the Parameters… button.

• SQL Command from variable – if you have a string variable that holds

the text of a SQL command, you can select this option. The SQL

Command from variable option give more flexibility in the way

parameters are mapped from package variables. The SQL Command text

is limited to 4,000 characters.

Development Guide EDFacts Shared State Solution

Page 14

The columns tab will show the columns to be returned by the connection defined

above. You can deselect some fields if you don’t want them all. This step

ensures that the system is able to parse your query.

a 2. Count Records

Step 2 is to count the records returned by the query and save the results into the

SuccessRecordsCount package variable.

Screen 8: Stage Loading, Source Data from Database, Count Records

The value stored in this variable will be used later to determine if the package

processed successfully. We assume if SuccessRecordCount is non-zero, that we

processed successfully.

a 3. Write Staging Records

Finally we write the records to our staging table.

Screen 9: Stage Loading, Source Data from Database, Write Staging Records, Connection Manager

Development Guide EDFacts Shared State Solution

Page 15

Use an OLEDB destination task and select the EDFacts Connection manager,

then select the table into which ES3 needs to copy data.

Then select the Mappings tab to map which input field gets loaded into which

destination field.

Screen 10: Stage Loading, Source Data from Database, Write Staging Records, Column Mapping

Either drag a field OR pick the appropriate field from the drop downs in the

Input Column section of the bottom half of the screen.

b. Source Data From an Excel File

If the source data is an Excel file or a text file, the typical data flow task is a little

different.

Figure 4: Stage Loading, Excel Source Data, Typical Data Flow

Development Guide EDFacts Shared State Solution

Page 16

Excel data are read by default using unicode characters. We need to add a Data

Conversion task to prepare the data for loading into our database tables.

Also, if the source data come from Excel, we to make sure the SSIS package does

not run in 64 bit mode – the Excel connection manager needs to run 32-bit.

Screen 11: Stage Loading, Excel Data Source, Project Properties

Select the project properties for the bottom of the Project menu.

Using the Debugging option on the left, then set Run64BitRuntime to False.

b 1. Excel Source Connection

The first step is to connect to the Excel workbook and the sheet from which to

read the source data.

Development Guide EDFacts Shared State Solution

Page 17

Screen 12: Stage Loading, Excel Source Data, Excel Source Connection, Connection Manager

Use the [New…] button to select the Excel workbook and then the Name of the

Excel Sheet drop-down to select the spreadsheet.

Screen 13: Stage Loading, Excel Source Data, Excel Source Connection, Columns

This screen provides verification that the spreadsheet can be read by the ES3 SSIS

process.

b 2. Data Conversion

Excel data is read by SSIS using Unicode code pages. These data cannot be used

to load the database tables this way, we need to translate the coding to a non-

Unicode character set.

When the Data Conversion task is opened, it will display a list of the fields from

the Excel file.

Development Guide EDFacts Shared State Solution

Page 18

Screen 14: Stage Loading, Excel Source Data, Data Conversion

For DT_WSTR fields, change the data type to DT_STR and set the Code Page to

1252 (ANSI - Latin 1). By default the output alias will be “Copy of <fieldname>”.

You can leave this, or rename the output alias to something appropriate.

b 3. Count Records

We still count the records returned by the query and save the results into the

SuccessRecordsCount package variable.

Screen 15: Stage Loading, Excel Data Source, Count Records

The value stored in this variable will be used later to determine if the package

processed successfully. We assume if SuccessRecordCount is non-zero, that we

processed successfully.

Development Guide EDFacts Shared State Solution

Page 19

b 4. Write Staging Records

This data flow ends with the same Write Staging Records task as the Database

source flow.

First select the EDFacts connection manager and desired Staging table.

Screen 16: Stage Loading, Excel Data Source, Write Stage Records, Connection Manager

Select the Mappings tab to define which of the fields get mapped into the

destination table.

Screen 17: Stage Loading, Excel Source Data, Write Stage Data, Mappings

Development Guide EDFacts Shared State Solution

Page 20

Either drag a field on the left to a field on the right in the upper half of the

window OR pick the appropriate field from the drop downs in the Input Column

section of the bottom half of the screen.

Be sure to select the fields on the left from the data conversion task as

appropriate. That is, if you converted a string field in the data conversion task,

both the pre conversion and post conversion fields will be in the pick lists.

5. Post Load Processing

Whether the source data came from an Excel spreadsheet, a text file, or a

database source, there often is post initial load processing and clean-up required

to get the data ready for EDFacts. This is the step that stores the states “business

rules” for how the EDFacts files should be built.

ES3 uses this step to set the includeInXXX flags, get organization names from

state identifiers, etc. This is also the step where, if state specific fields were

“tacked on” to the staging table, those values are used to populate the core fields

that the Submission Loading process uses.

If the source data came from Excel or a text file (that is, if the step above just

loaded the EDFacts_LocalSource table), then this step clears the selected school

year from the EDFacts_Staging table and copies the data from

EDFacts_LocalSource to EDFacts_Staging.

This step is typically handled with a stored procedure in the EDFacts_Staging

schema. The procedure naming convention is ef_ETL_<Name of the Data Being

Processed>_PostProcesssing

Screen 18: Stage Loading, Post Load Processing, General Information

In this case, we have a single stored procedure call as the SQL Statement:

 exec EDFacts_Staging.ef_ETL_FallMembership_PostProcessing ?

The question mart on the end indicates the procedure takes a single parameter,

mapped to the User::ReportingPeriod variable on the Parameter Mapping step.

Development Guide EDFacts Shared State Solution

Page 21

Screen 19: Stage Loading, Post Load Processing, Parameter Mapping

The stored procedure is custom for each state and Stage Loading package.

6. Build Email

Finally, we need to build the email message. If the successRecordCount is

greater than 1, we assume things went well. In this case, we use the

SuccessEmailToLine and SuccessEmailCCLine. If not, then we use the

ErrorEmailToLine and ErrorEmailCCLine.

public void Main()
 {
 string strPackageName;
 string strMsgText;

 //Count processing
 int Successes = (int)Dts.Variables["User::SuccessRecordCount"].Value;

 //If no Successes, set warning
 if (Successes == 0)
 {
 //Set result type to warning
 //Get warning message for log
 Dts.Variables["User::EmailMessageSubject"].Value
 = "Warning: No records were copied to Staging";
 Dts.Variables["User::EmailMessageToLine"].Value =
Dts.Variables["User::ErrorEmailToLine"].Value;
 Dts.Variables["User::EmailMessageCCLine"].Value =
Dts.Variables["User::ErrorEmailCCLine"].Value;
 }
 else
 {
 //Get Success message for log
 Dts.Variables["User::EmailMessageSubject"].Value
 = "Success: "
 + Successes.ToString()
 + " records were copied to Staging";

 Dts.Variables["User::EmailMessageToLine"].Value =
Dts.Variables["User::SuccessEmailToLine"].Value;
 Dts.Variables["User::EmailMessageCCLine"].Value =
Dts.Variables["User::SuccessEmailCCLine"].Value;
 }

 strPackageName = (string)Dts.Variables["System::PackageName"].Value;

 Dts.Variables["User::EmailMessageSubject"].Value =
 strPackageName
 + " processng succeeded";

 strMsgText = "The processing of package " + strPackageName;
 strMsgText += " completed for the ";
 strMsgText += Dts.Variables["User::ReportingPeriod"].Value;
 strMsgText += " reporting period. \n\n";

 strMsgText += Successes.ToString();
 strMsgText += " records were written to the ";

Development Guide EDFacts Shared State Solution

Page 22

 strMsgText += Dts.Variables["StagingTableName"].Value;
 strMsgText += " Table.";

 Dts.Variables["User::EmailMessageBody"].Value = (object)strMsgText;

 Dts.TaskResult = (int)ScriptResults.Success;
 }

Read Only Variables

• User::ErrorEmailCCLine

• User::ErrorEmailToLine

• System::PackageName

• User::ReportingPeriod

• User::SuccessEmailCCLine

• User::SuccessEmailToLine

• User::SuccessRecordCount

ReadWrite Variables

• User::EmailMessageBody

• User::EmailMessageCCLine

• User::EmailMessageSubject

• User::EmailMessageToLine

No edits are required from the template. However, depending on the data being

staged, sometimes additional information is useful and the email may be

adjusted as needed.

7. Global Container Completion

The Global Container exit constraint should be set as a “Completion” constraint

as opposed to the default “Success” constraint. This ensures that we always fall

through to the Update Email Log task.

To change the constraint, right click and select “Completion”. The line should

change to blue from green.

No edits are required from the template.

8. Update Email Log

Just prior to Sending the notification email and exiting, we write the email

components to a log table. This way, if the email send process fails – bad

address, size limit on the email server, etc. – we still have a record of the

processing.

The Execute SQL task uses the following SQL Statement:

insert into EDFacts_Admin.EmailLog (
 EmailDate,
 EmailSubject,
 EmailToLine,

Development Guide EDFacts Shared State Solution

Page 23

 EmailCCLine,
 EmailMessageBody,
 EmailAttachmentList
)
 values (
 getdate (),
 ?,
 ?,
 ?,
 ?,
 ?
)

This routine takes the following five parameters and writes them to the log:

Screen 20: Stage Loading, Update Email Log, Parameter Mapping

No edits are required from the template.

9. Send Notification

The final task is to email the notification to the appropriate folk. The basic set-up

is as follows:

Screen 21: Stage Loading, Send Notification, Mail Settings

But the real work is in the Expressions that set the appropriate values for the

email

Development Guide EDFacts Shared State Solution

Page 24

Screen 22: Stage Loading, Send Notification, Expressions

No edits are required from the template.

Submission Table Load and File Creation

The submission table load and submission file creation process copies data from

the staging tables into the submission tables and creates the submission files.

The process logs the package start and stop and some of the detail steps. The

generic process will validate the staging data and if that passes, loads the

submission tables and creates the submission files. At the end of the process, an

email is sent to appropriate staff notifying them that the process is complete.

Submission Table Design

For each EDFacts file there is a table in the EDFacts_Submission schema. The

EDFacts_Submission tables are designed to mirror the EDFacts formats as much

as possible. We will add three columns at the start of the table for the report

level, school year (reporting period), and a categorySortOrder to group the

records by category set or subtotal number.

In a few instances, the table structure is different for the different levels,

directory for instance. In that case, the level will be appended to the end of the

table names: for example S092_SCH or S029_LEA.

If the table structure for the current year is sufficiently different from a prior year

for the same submission number, the existing table is renamed by adding the last

year for which the table is valid to the end of the table name. Then a new table is

created using the naming conventions above. For example, if the 2012-13

membership file, S052, were significantly different than the existing membership

file, we would rename the old table to S052_2011_12, and create a new S052 table.

The count field in all the tables is consistently named [totalCount] regardless of

the file specification field name. This allows the generic year to year comparison

routine to work.

Generic Submission Package Connection Managers

There are 6 connections for the generic Submission File ETL Process. Each is

discussed below. A particular ETL package may not have SEA, LEA or School

data file connections, if the EDFacts report in question does not include that

level.

Development Guide EDFacts Shared State Solution

Page 25

Screen 23: Submission Loading, Generic Connection Managers

EDFacts

This is an OLEDB connection to the EDFacts SQL Server catalog. This catalog

has EDFacts_Admin, EDFacts_Compare, EDFacts_LocalSource,

EDFacts_Staging, EDFacts_Submission, and EDFacts_Validation schemas. These

schemas are referenced by tasks in the ETL process.

The connection string for this connection is configured in the

SSIS_Configurations table under the Core Connections filter

Mail Server

This is an SMTP connection to the server through which email notifications are

sent from the ETL processes.

Screen 24: Submission Loading, Connections, Mail Server

Change the SMTP Server field to point to the appropriate email server.

The SmtpServer for this connection is configured in the SSIS_Configurations

table under the Core Connections filter.

The other two settings in the Core Connections package configuration are

EnableSsl and UseWindowsAuthentication.

Invalid Records

Invalid Records is a flat file connection to where the records are written that fail

validation. The file will consist of two columns, one with the key field identifier

for the invalid record, and the second for the reason the record failed.

Development Guide EDFacts Shared State Solution

Page 26

By default, the invalid records are written to a file in the <Root File

Directory>/<Work directory>. The file name for the invalid records file comes

from the EDFacts_Admin.SubmissionFileCharacteristic table’s

invalidRecordsFileName field.

SEA Data File

This is a flat file connection to where the SEA EDFacts Submission file will be

written. The general behavior is to write these to:

<RootFileDirectory>/<FileSubDirectory>/<FileNameSEA>

The RootFileDirectory value comes from the StateConfig table’s

storageDirectoryRootPath field value for the selected reporting period. The

<FileSubDirectory> value comes from

EDFacts_Admin.SubmissionFileCharacteristic table. The FileNameSEA value is

built in the ETL Process then written to EDFacts_Admin.SubmissionFileHistory.

Not all EDFacts files specs have an SEA file, so it is not always created.

LEA Data File

This is a flat file connection to where the LEA EDFacts Submission file will be

written. The general behavior is to write these to:

<RootFileDirectory>/<FileSubDirectory>/<FileNameLEA>

The RootFileDirectory value comes from the StateConfig table’s

storageDirectoryRootPath field value for the selected reporting period. The

<FileSubDirectory> value comes from

EDFacts_Admin.SubmissionFileCharacteristic table. The FileNameLEA value is

built in the ETL Process then written to EDFacts_Admin.SubmissionFileHistory.

Not all EDFacts files specs have an LEA file, so it is not always created.

School Data File

This is a flat file connection to where the School level EDFacts Submission file

will be written. The general behavior is to write these to:

<RootFileDirectory>/<FileSubDirectory>/<FileNameSchool>

The RootFileDirectory value comes from the StateConfig table’s

storageDirectoryRootPath field value for the selected reporting period. The

<FileSubDirectory> value comes from

EDFacts_Admin.SubmissionFileCharacteristic table. The FileNameSchool value

is built in the ETL Process then written to

EDFacts_Admin.SubmissionFileHistory.

Development Guide EDFacts Shared State Solution

Page 27

Not all EDFacts files specs have a School level file, so it is not always created.

Generic Submission Package ETL Variables

The generic Submission Table load ETL process uses a number of variables in its

processing. These variables are shown in the table below. Most of these are

implemented as package level user variables in SSIS.

Variable Value Source Used By

BadRecordsCount Originally zero and updated by
the [Validate the Source] data
flow task

Conditional flows out of the
[Log Validation End] task,
and the [Validation Failed]
[Create Email] task

CreateZipsAndAttach Set in [Set Package Defaults],
Default to “Yes”

Create Email Text tasks
and toggles Zip file tasks

CsvFileNameLEA Set in [Get the Filename to Use
for LEA]

[Write LEA Header Rec]
and [Write LEA Data
Records]

CsvFileNameSchool Set in [Get the Filename to Use
for School]

[Write School Header Rec]
and [Write School Data

Records]

CsvFileNameSEA Set in [Get the Filename to Use
for SEA]

[Write SEA Header Rec]
and [Write SEA Data
Records]

EmailAttachments Originally blank. Built in the
[Validation Failed] or [Validation
Succeeded] [Create Email] tasks

[Send Email] and [Update
Email Log] tasks

EmailMessageBody Default values set in the result
type task Updated in the
[Validation Failed] or [Validation

Succeeded] [Create Email] tasks

generate error email
message body, generate
success email message

body, send notification

EmailMessageCCLine Set when the Email is created
either as ErrorEmailCCLine or
SuccessEmailCCLine

send notification

EmailMessageFromLine Set in Set Package Defaults.
Read from StateConfig

send notification

EmailMessageSubject Default value of “<package
name> Failed” is set in the
package. Value gets updated in
[Create Email Message Text] or
[Create Success Email Text]
tasks

send notification

EmailMessageToLine Set when the Email is created
either as ErrorEmailToLine or
SuccessEmailToLine

send notification

ErrorEmailCCLine Default values set in the
package but exposed in the
“Package Specific” package
configuration. Editable at
runtime

Create Email Message Text

ErrorEmailToLine Default values set in the
package but exposed in the
“Package Specific” package
configuration. Editable at
runtime

Create Email Message Text

FileSubDirectory

InvalidRecordsFileName

Development Guide EDFacts Shared State Solution

Page 28

Variable Value Source Used By

ReportingPeriod

RootFilePath read in from the state config
table in the Set Filepath routine

send notification

SubmissionFileNumber

SuccessEmailCCLine Default values set in the
package but exposed in the
“Package Specific” package
configuration. Editable at
runtime

Create Success Email Text

SuccessEmailToLine Default values set in the
package but exposed in the
“Package Specific” package
configuration. Editable at
runtime

Create Success Email Text

SuccessRecordsCount

ZipFileNameLEA

ZipFileNameSchool

ZipFileNameSEA

ZipFilePassword

ZipInvalidRecordsFileName

Development Guide EDFacts Shared State Solution

Page 29

Generic Submission Package ETL Flow Design

The generic SSIS package flow is shown in the diagram below.

 Validation Failed

 Validation Successful
Set Package Defaults

Clear Previous Invalid

Records

Validate Source Data

ETL Into Submission

Tables

Send Notification

 Global Container

Get Invalid Records

BadRecord
Count = 0

BadRecordCount > 0

 Create Submission Files Container

1

2

Check-Create

Directories

3

4

6

7

9

12

13

17

5

 Write SEA Level File Write LEA Level File Write School Level File

Get School Level

 File Name

Get LEA Level

File Name

Get SEA Level

File Name

Write School File

Header Record

Write LEA File

Header Record

Write SEA File

Header Record

Write School File

Data Records

Write LEA File

Data Records

Write SEA File

Data Records

Create Success
Email Text

Update Email Log

14

18 18 18

19 1919

20 2020

21 21 21

23

25

26

24

ef_SetFileHistory

15

Set Record Counts

Get File Name

8

Zip Invalid Records

Create EMail

Message Text

Zip School File Zip LEA File Zip SEA File

22 22 22

10

11

16

Figure 5: Submission Loading Generic Package Control Flow

Each of the numbered items in the flow is discussed below.

The steps with green circled numbers do not require any modification from the

template for a specific EDFacts submission file. Only the yellow numbered tasks

need to be modified for a specific EDFacts Submission file, specifically:

• Validating the Staging Data (#4)

• The ETL of the data from Staging into the Submission tables (#14)

• Set Record Counts (#16)

• Writing the Data Records (#21)

All the other steps in the process flow are identical with the template and for

each submission file.

Development Guide EDFacts Shared State Solution

Page 30

1. Global Container

The bulk of the work in the package is contained with a Sequence Container. We

do this so that if at any point the SSIS process fails, it will fail over to the final

tasks of updating the email log and sending notification. Without this container,

the user would never get notified in the event of a failure in the package

No edits are required from the template.

2. Set Package Defaults

This is a SQL Task that reads various values from the configuration tables and

saves them into user variables. Values to be set include:

• Root file path

• File Sub directory

• Invalid Records File Name

• Email Message From: line

Screen 25: Submission Loading, Set Package Defaults, General Information

The query is shown below

select top 1
 cfg.storageDirectoryRootPath,
 fc.fileSubdirectory,
 fc.invalidRecordsFileName,
 cfg.EmailMessageFromLine
 from EDFacts_Admin.SubmissionFileCharacteristic fc
 join EDFacts_Admin.StateConfig cfg
 on (fc.reportingPeriod = cfg.reportingPeriod)
 where fc.reportingPeriod = ?
 and fc.specificationNumber = ?

There are two parameters for the query: the submission file number and the

reporting period. The submissionFileNumber is a variable that is set at design

time. The reportingPeriod is a variable that the user will be able to change via a

configuration file.

Development Guide EDFacts Shared State Solution

Page 31

Screen 26: Submission Loading, Set Package Defaults, Parameter Mapping

The query reads several fields which then get mapped into the following

package level user variables.

Screen 27: Submission Loading, Set Package Defaults, Result Set

3. Check-Create Directories

This script task verifies that the root directory (RootFilePath variable) and the

package sub-directory (FileSubDirectory variable) exist on the server. If the root

directory cannot be found, then the email message is created stating this

directory is missing and the package is failed.

If the specific package subdirectory is missing, then the directory is created

within the root directory.

Screen 28: Submission Loading, Check-Create Directories, Script Settings

public void Main()
{
 // Specify the directory you want to check.
 string pathRoot = (string)Dts.Variables["User::RootFilePath"].Value;
 string pathSub = (string)Dts.Variables["User::FileSubDirectory"].Value;

 // Determine whether the main directory exists.
 if (Directory.Exists(pathRoot))
 {
 // Main Directory exists
 // Check if subfolder exists. If not, then create the folder.
 string fullPathSub = Path.Combine(pathRoot, pathSub);

 if (!Directory.Exists(fullPathSub))
 {
 DirectoryInfo di = Directory.CreateDirectory(fullPathSub);
 }
 }
 else
 {
 // Main Directory does not exist.

Development Guide EDFacts Shared State Solution

Page 32

 // Create an email message and fail the package immediately
 string strMsgText;
 string strPackageName = (string)Dts.Variables["System::PackageName"].Value;

 strMsgText = "The package '" + strPackageName + "' failed. ";
 strMsgText += "The folder '" + pathRoot + "' does not exist.";

 Dts.Variables["User::EmailMessageSubject"].Value = strPackageName + " failed";
 Dts.Variables["User::EmailMessageBody"].Value = (object)strMsgText;

 Dts.TaskResult = (int)ScriptResults.Failure;
 return;

 }

 Dts.TaskResult = (int)ScriptResults.Success;
}

4. Clear Previous Invalid Records from the Log

The next task is to clear out any invalid records for this submission file and

reporting period from the error log table. If this process has been executed

previously there may be records in that table. We will be sending the bad

records to the coordinator and don’t need to include records that have previously

reported. There is not a need to keep a history of the bad records.

Screen 29: Submission Loading, Clear Previous Invalid Records, General Information

This Execute SQL task is a call to a simple DELETE FROM SQL statement

delete from EDFacts_Staging.invalidRecordsForSubmission
 where submissionFile = ?
 and reportingPeriod = ?

The two parameters for this query are the SubmissionFileNumber and

ReportingPeriod.

Screen 30: Submission Loading, Clear Previous Invalid Records, Parameter Mapping

Development Guide EDFacts Shared State Solution

Page 33

No edits are required from the template.

5. Validate the Source Data

This is a stored procedure that is custom for each file type and data source.

Figure 6: Submission Loading, Validate Source Data, Data Flow

This data flow task has three steps: query the source for bad records, get a row

count of bad records and store that, and finally write the bad records into the bad

records table (this is the table cleared out in step 4).

The first step calls a validation stored procedure, specific to the task at hand. In

the case of S052, the Membership file, the validation routine looks like:

create procedure [EDFacts_Staging].[ef_StageValidation_S052]
 @SchoolYear as varchar (9)
as
 /**
 * Runs validation against the N052 source (Unit_studentDemographics) and
 * SELECTS any bad records. In the SSIS package, if record count > 0 redirect
 * the process to report the error records and stop the EDFacts file creation
 *
 * @author : Steven King, ESP Solutions Group
 * @version : 1.0 28-Oct-2011
 * @param : @SchoolYear The school year for which data should be
 * : processed in YYYY-XXXX format, for
 * : example: 2009-2010
 * @system : EDFacts Shared State Solution
 * Notes : 'Select' bad records for saving into the invalid records
 * : for submission table. The structure of the Invalid
 * : records table is:
 * : SubmissionFile varchar(8) e.g. @SpecificationFileNumber
 * : reportingPeriod varchar(9) '2010-2011'
 * : keyFieldValue varchar(50) <student ID> or other
 * : unique ID for the
 * : invalid record
 * : errorMessage varchar(150) <error message text>
 * Revision History
 * ----------- --------------- --
 *
 */

 begin
 -- SET NOCOUNT ON added to prevent extra result sets from
 -- interfering with SELECT statements.

Development Guide EDFacts Shared State Solution

Page 34

 set nocount on;
 declare @FileSpecificationNumber varchar (4) = 'S052'
 declare @ProblemRecords table (
 keyFieldValue varchar (50),
 errorMessage varchar (150)
)
 declare @CodeSetExists int

 declare @CodeSetName varchar (50)

 -- -- --
 -- C O D E S E T S
 -- -- --
 -- Code Sets needed in StateCodeTranslation table
 -- : Grade Level (Membership)
 -- : Sex
 -- : Race Ethnicity
 -- -- --
 -- region G r a d e L e v e l (M e m b e r s h I p)
 --
 set @CodeSetName = 'Grade Level (Membership)'

 -- check code set defined in code set Translation table
 set @CodeSetExists =
 (select count (*)
 from EDFacts_Admin.StateCodeTranslation
 where codeSetName = @CodeSetName
 and reportingPeriod = @schoolYear)

 -- Report error if not
 insert into @ProblemRecords (
 keyFieldValue,
 errorMessage
)
 select @CodeSetName as keyFieldValue,
 'Code Set Missing from StateCodeTranslation table' as errorMessage
 where @CodeSetExists = 0

 -- Check staging values are in the Code set, but only if code set exists
 if @CodeSetExists >= 1
 begin
 insert into
 @ProblemRecords (keyFieldValue, errorMessage)
 select 'State Student ID: '
 + s.stateStudentIdentifier
 as KeyFieldValue, -- Set KeyValue
 'Invalid option for ['
 + @CodeSetName
 + '] of ['
 + isnull(s.gradeLevel,'')
 + ']'
 as errorMessage -- update error message
 from EDFacts_Staging.Unit_Studentdemographics s
 left join
 EDFacts_Admin.StateCodeTranslation t
 on t.reportingPeriod = @schoolYear
 and t.codeSetName = @CodeSetName
 and s.gradeLevel = t.stateCode
 where t.edfactsCode is null
 and s.schoolYear = @SchoolYear
 end
 -- end region

 -- -- --
 -- region R a c e E t h n I c I t y
 --

 set @CodeSetName = 'Race Ethnicity'

Development Guide EDFacts Shared State Solution

Page 35

 -- check code set defined in code set Translation table
 set @CodeSetExists =
 (select count (*)
 from EDFacts_Admin.StateCodeTranslation
 where codeSetName = @CodeSetName
 and reportingPeriod = @schoolYear)

 -- Report error if not
 insert into @ProblemRecords (
 keyFieldValue,
 errorMessage
)
 select @CodeSetName as keyFieldValue,
 'Code Set Missing from StateCodeTranslation table' as errorMessage
 where @CodeSetExists = 0

 -- Check staging values are in the Code set, but only if code set exists
 if @CodeSetExists >= 1
 begin
 insert into
 @ProblemRecords (keyFieldValue, errorMessage)
 select 'State Student ID: '
 + s.stateStudentIdentifier
 as KeyFieldValue, -- Set KeyValue
 'Invalid option for ['
 + @CodeSetName
 + '] of ['
 + isnull(s.raceEthnic,'')
 + ']'
 as errorMessage -- update error message
 from EDFacts_Staging.Unit_Studentdemographics s
 left join
 EDFacts_Admin.StateCodeTranslation t
 on t.reportingPeriod = @schoolYear
 and t.codeSetName = @CodeSetName
 and s.raceEthnic = t.stateCode
 where t.edfactsCode is null
 and s.schoolYear = @SchoolYear
 end
 -- end region
 -- -- --
 -- region S e x
 --

 set @CodeSetName = 'Sex'

 -- check code set defined in code set Translation table
 set @CodeSetExists =
 (select count (*)
 from EDFacts_Admin.StateCodeTranslation
 where codeSetName = @CodeSetName
 and reportingPeriod = @schoolYear)

 -- Report error if not
 insert into @ProblemRecords (
 keyFieldValue,
 errorMessage
)
 select @CodeSetName as keyFieldValue,
 'Code Set Missing from StateCodeTranslation table' as errorMessage
 where @CodeSetExists = 0

 -- Check staging values are in the Code set, but only if code set exists
 if @CodeSetExists >= 1
 begin
 insert into
 @ProblemRecords (keyFieldValue, errorMessage)
 select 'State Student ID: '

Development Guide EDFacts Shared State Solution

Page 36

 + s.stateStudentIdentifier
 as KeyFieldValue, -- Set KeyValue
 'Invalid option for ['
 + @CodeSetName
 + '] of ['
 + isnull(s.sex,'')
 + ']'
 as errorMessage -- update error message
 from EDFacts_Staging.Unit_Studentdemographics s
 left join
 EDFacts_Admin.StateCodeTranslation t
 on t.reportingPeriod = @schoolYear
 and t.codeSetName = @CodeSetName
 and s.sex = t.stateCode
 where t.edfactsCode is null
 and s.schoolYear = @SchoolYear
 end
 -- end region

 -- Now select the data to be returned
 select
 @FileSpecificationNumber as submissionFile,
 @schoolYear as reportingPeriod,
 keyFieldValue,
 errorMessage
 from @ProblemRecords
 end

The structure of the routine is to create a table variable to hold any details about

any erroneous records. There are two fields in the table, one for record

identification information (key field) and then the error message.

There are sections to validate each of the code sets needed from the

StateCodeTranslation table. The first part of the section verifies that the code set

exists, then if it does, are all of the values in the staging table present in the

translation table.

Finally, any results in the table variable are “SELECTed” as the result for the SSIS

data flow task. The selected fields are:

Submission File The number for the submission file whose staging data

is being validated

Reporting Period The reporting period being covered

Key Field Value The record identifier for the staging record that violates

the validation rule

Error Message a descriptive message about what validation error was

found and used to exclude this record from the

Submission file creation process

Development Guide EDFacts Shared State Solution

Page 37

Screen 31: Submission Loading, Validate Source Data, Columns

The second step in the validation data flow task is to count the records returned

in step 1 and save that count in the variable BadRecordsCount.

Screen 32: Submission Loading, Validate Source Data, Bad Records Count

The final step is to save the bad records to the bad records table:

EDFacts_Staging.InvalidRecordsForSubmission.

Development Guide EDFacts Shared State Solution

Page 38

‘Screen 33: Submission Loading, Validate Source Data, Write Invalid Records, Connection Manager

Screen 34: Submission Loading, Validate Source Data, Write Invalid Records, Field Mapping

6. Validation Failed Decision

There are two paths out of the validation step depending on if any records failed

validation.

This failure path uses an expression constraint that checks if the Bad Record

Count (set in step 4) is greater than 0.

No edits are required from the template.

7. Validation Failed Container

This is simply an organizing container for the steps required when the validation

process fails.

Development Guide EDFacts Shared State Solution

Page 39

No edits are required from the template.

8. Get Invalid Records File Name

This is a task to get the file names for both the tab delimited and zip file that will

store Invalid records. The task also gets the zip file password if one has been

assigned.

Screen 35: Submission Loading, Get Invalid Records File Name, General Information

The query that is used in this task is as follows:

 select top 1
 c.storageDirectoryRootPath
 + '\'
 + h.fileSubdirectory
 + '\'
 + h.invalidRecordsFileName
 + '.tab'
 as csvFileName,
 c.storageDirectoryRootPath
 + '\'
 + h.fileSubdirectory
 + '\'
 + h.invalidRecordsFileName
 + '.zip'
 as zipFileName,
 h.zipFilePassword
 from EDFacts_Admin.SubmissionFileCharacteristic h,
 EDFacts_Admin.StateConfig c
 where c.reportingPeriod = ?
 and h.specificationNumber = ?
 and h.reportingPeriod = c.reportingPeriod

This query takes two parameters, the reporting period and the specification

number.

Development Guide EDFacts Shared State Solution

Page 40

Screen 36: Submission Loading, Get Invalid Records File Name, Parameter Mapping

And it saves its information into three variables

Screen 37: Submission Loading, Get Invalid Records File Name, Result Set

No changes are need for this task from the template.

9. Get Invalid Records

This data flow task reads the bad records out of the bad records table and writes

them to the tab delimited flat file. This file will be attached to the error

notification email.

The flow consists of two steps

Screen 38: Submission Loading, Get Invalid Records Data Flow

The first takes the current submission file and reporting period to query out the

keyRecordValue and ErrorMsg from the Invalid Records table. The query for the

Read step is as follows.

 select keyFieldValue,
 errorMessage
 from EDFacts_Staging.InvalidRecordsForSubmission
 where submissionFile = ?
 and keyFieldValuereportingPeriod = ?

The second step writes these the invalid records flat file.

Development Guide EDFacts Shared State Solution

Page 41

Screen 39: Submission Loading, Get Invalid Records, Mappings

No edits are required from the template.

10. Zip Invalid Records File

The next task Zips the flat file populated above. The process will apply the Zip

Password if one has been defined. The resulting file is written to the

ZipInvalidRecordsFileName location.

Screen 40: Submission Loading, Zip Invalid Records File

No changes are needed from the template.

11. Create Error Email Message Body

This script task creates the text for the email notification that will go out and

stores the result in the EmailMessageBody user variable.

The EmailMessageToLine and EmailMessageCCLine are set by copying the

values from ErrorEmailToLine and ErrorEmailCCLine, respectively.

Development Guide EDFacts Shared State Solution

Page 42

The name of the Invalid Records zip file is stored in the EmailAttachments

variable.

Screen 41: Submission Loading, Create Error Email Message, General Settings

This is hard to read. The ReadOnly variables are:

• User::BadRecordsCount

• User::ErrorEmailCCLine

• User::ErrorEmailToLine

• User::InvalidRecordsFileName

• System::PackageName

• User::ZipFilePassword

• User::ZipInvalidRecordsFileName

The ReadWrite variables are:

• User::EmailAttachments

• User::EmailMessageBody

• User::EmailMessageCCLine

• User::EmailMessageSubject

• User::EmailMessageToLine

The email text states that the validation failed, includes up to the first 20 failing

records, and references where the full invalid records list can be found.

//Create EMail Validation Failed

public void Main()
{
 string strMsgText;
 int intBadRecordCount;
 string strWorkFile;
 string strPackageName;
 string strZipFilename;
 string strAttachments;

 strPackageName = (string)Dts.Variables["System::PackageName"].Value;
 strZipFilename = (string)Dts.Variables["User::ZipInvalidRecordsFileName"].Value;
 strWorkFile = (string) Dts.Variables["User::InvalidRecordsFileName"].Value;

 Dts.Variables["User::EmailMessageSubject"].Value =
 strPackageName
 + " validation failed";

 strMsgText = "The package '" + strPackageName;
 strMsgText += "' failed data validation. There ";
 intBadRecordCount = (int) Dts.Variables["User::BadRecordsCount"].Value;

 if (intBadRecordCount != 1)
 {
 strMsgText += "were " + intBadRecordCount.ToString() + " records";
 strMsgText += " that failed.\n";

Development Guide EDFacts Shared State Solution

Page 43

 if (intBadRecordCount < 20)
 {
 strMsgText += "\nThe record ID's and reasons for the failure “;
 strMsgText += "are listed below:\n\n";
 }
 else
 strMsgText += "\nThe first 20 invalid records are listed below: \n\n";
 }
 else
 {
 strMsgText += "was 1 record the failed.\n";
 strMsgText += "\nThe record ID and reason for the failure are ";
 strMsgText += "listed below:\n\n";
 }

 int i = 0;
 try
 {
 using (StreamReader errRecs = new StreamReader(strWorkFile))
 {
 String line;
 while ((line = errRecs.ReadLine()) != null && i <= 20)
 {
 strMsgText += line + "\n";
 i += 1;
 }
 }
 }
 catch (Exception e)
 {
 strMsgText += " <<<< Could Not Read the Invalid Records file >>>> \n";
 strMsgText += e.Message;
 }

 strMsgText += "\n\nThe full list of invalid records is attached and ";
 strMsgText += " are included in the file: \n ";
 strMsgText += strZipFilename;
 strMsgText += "\nOn the database server";

 if ((string)Dts.Variables["User::ZipFilePassword"].Value != "")
 {
 strMsgText += "\n\nThe Zip file has been password protected.";
 }

 Dts.Variables["User::EmailMessageToLine"].Value =
 Dts.Variables["User::ErrorEmailToLine"].Value;
 Dts.Variables["User::EmailMessageCCLine"].Value =
 Dts.Variables["User::ErrorEmailCCLine"].Value;

 Dts.Variables["User::EmailMessageBody"].Value = (object)strMsgText;

 if (intBadRecordCount > 0)
 strAttachments = strZipFilename;
 else
 strAttachments = "";

 Dts.Variables["User::EmailAttachments"].Value = (object)strAttachments;

 Dts.TaskResult = (int)ScriptResults.Success;
}

No edits are required from the template.

Development Guide EDFacts Shared State Solution

Page 44

12. Validation Success Decision

This step is the alternate path (from step 6) exiting the validation process. It uses

an expression constraint checking if the Bad Record Count == 0

No edits are required from the template.

13. Validation Success Container

This is an organizing container for all the steps that occur once the staging data

have been validated.

No edits are required from the template.

14. Conduct the ETL

Each EDFacts file type has a matching EDFacts submission table that is loaded by

a stored procedure. For most of the EDFacts submissions, the process consists of:

1. Delete any existing records in the submission tables for the selected

reporting period.

2. Extract and Load the EDFacts Detail records for the school level. (These

will be aggregates of the staging unit records, but the lowest level of

detail EDFacts collects)

3. Create the zero records for the detail: create records for any missing

subgroups in the data set. For example, a school may not have any 3rd

graders for the specific count in question – we need to add a zero record.

4. Calculate the school level subgroups – these are subtotals, but with less

detail than the detail level.

5. Extract and load the LEA detail records.

6. Create the zero detail records for the LEA files

7. Calculate the roll-up subtotals for the LEA files

8. Extract and load the SEA detail records

9. Create any zero records for the SEA details

10. Create the SEA level subtotals

In general the ETL step is an Execute SQL Task that calls a stored procedure for

this work. The specific stored procedure should be named like

“EDFacts_Submission.ef_ETL_Sxxx” where “xxx” is the submission number, for

example “ef_ETL_S052” for the Membership file.

The edits for this task consist of:

1. Making any changes that are required for the stored procedure

2. Making sure the task points to the correct stored procedure

Development Guide EDFacts Shared State Solution

Page 45

Screen 42: Submission Loading, Conduct the ETL, General Information

In this case there is a single parameter holding the reporting year.

Screen 43: Submission Loading, Conduct the ETL, Parameter Mapping

15. Set File History

This is a SQL task that executes the stored procedure ef_ETL_SetFileHistory. The

procedure takes five parameters: the submission file number, the reporting

period, and then Y/N flags for whether we are creating an SEA file, an LEA file,

or a School level file.

Screen 44: Submission Loading, Set File History, General Information

Development Guide EDFacts Shared State Solution

Page 46

We pass in the first two parameters and hard code the last three. By default the

last three flags are set to ‘Y’ in the template.

Screen 45: Submission Loading, Set File History, Parameter Mapping

This stored procedure logs that we are creating files for the selected levels and

otherwise populates the EDFacts_Admin.SubmissionFileHistory table. In the

process it builds the file name and file identifier that will be used in the headers,

and builds the fully qualified name for the tab and zip files that will be created.

No edits are required from the template unless not all three levels will be built, in

which case, only the appropriate flag needs to be changed on the SQL Statement

line on the General properties page.

16. Set Record Counts

The SET Record Counts task gets the number of records that are going to be

written to each of the file levels and updates the SubmissionFileHistory table

with that information.

The code that does the record count is shown below.

declare @ReportingPeriod varchar (9) = ?;

 /* School Level Record Count */
 update EDFacts_Admin.SubmissionFileHistory
 set currentRecordCount =
 (select count (*)
 from EDFacts_Submission.S052  Update
 where reportLevel = 'SCH' and schoolYear = @ReportingPeriod)
 where specificationNumber = 'S052'  Update
 and reportingPeriod = @ReportingPeriod
 and reportLevel = 'SCH'
 and isMostCurrent = 'Y';

 /* LEA Level Record Count */
 update EDFacts_Admin.SubmissionFileHistory
 set currentRecordCount =
 (select count (*)
 from EDFacts_Submission.S052  Update
 where reportLevel = 'LEA' and schoolYear = @ReportingPeriod)
 where specificationNumber = 'S052'  Update
 and reportingPeriod = @ReportingPeriod
 and reportLevel = 'LEA'
 and isMostCurrent = 'Y';

 /* SEA Level Record Count */
 update EDFacts_Admin.SubmissionFileHistory
 set currentRecordCount =
 (select count (*)
 from EDFacts_Submission.S052  Update
 where reportLevel = 'SEA' and schoolYear = @ReportingPeriod)
 where specificationNumber = 'S052'  Update
 and reportingPeriod = @ReportingPeriod
 and reportLevel = 'SEA'

Development Guide EDFacts Shared State Solution

Page 47

 and isMostCurrent = 'Y';

This routine needs to be adjusted to read from the correct submission table and

to use the correct Submission file number. In not all three levels are being

reported, then comment out or delete the appropriate section.

17. Create Submission Files Container

The container for the Create Submission files allows these processes to run in

parallel.

Depending on the file type one or more of the individual file levels may not be

included. Placing these in a container means they can be disabled or enabled as a

group.

No edits are required from the template unless specific levels – SEA, LEA, or

School – should be removed.

18. Create File Containers – One for Each Level

These are organizing containers that allow the individual levels to be written

independently.

No edits are required from the template.

19. Get File Name for Level

These Execute SQL Task processes get the file name and file path from the

SubmissionFileHistory table. The values were set as part of the Set File History

step #15.

 select top 1
 filename, filepath
 from EDFacts_Admin.SubmissionFileHistory
 where reportingPeriod = ?
 and specificationNumber = ?

 and reportLevel = 'SCH' <-- set for the specific level in question
 and isMostCurrent = 'Y'

No edits are required from the template.

20. Write File Header Record

This is a data flow step with two tasks:

Development Guide EDFacts Shared State Solution

Page 48

Screen 46: Submission Loading, Write File Header, Data Flow

The Get Header Fields OLEBD Data Source task has a query that reads the

appropriate information out of the SubmissionFileCharactersitics table and the

SubmissionFileHistory table.

 select c.headerRecordFileType,
 h.currentRecordCount,
 h.fileName,
 h.fileIdentifier,
 h.reportingPeriod,
 ' ' as filler
 from EDFacts_Admin.SubmissionFileCharacteristic c
 join
 EDFacts_Admin.SubmissionFileHistory h
 on c.reportingPeriod = h.reportingPeriod
 and c.specificationNumber = h.specificationNumber
 and c.reportLevel = h.reportLevel
 where c.reportingPeriod = ?
 and c.specificationNumber = ?
 and c.reportLevel = 'SCH'  set for the appropriate level
 and h.isMostCurrent = 'Y'

The parameters for this task are the ReportingPeriod and SpecificationNumber.

The reportLevel filter needs to be set for the appropriate level in the three

containers.

The Write Header Record simply writes the selected data to the first six columns

in the appropriate data file connection.

On the Connection Manager screen, select the appropriate connection, State, LEA

or School, and check the Overwrite data in the file checkbox.

Screen 47: Submission Loading, Write File Header, Connection Manager

Map the columns as required by the file specification.

Screen 48: Submission Loading, Write File Header, Mappings

Development Guide EDFacts Shared State Solution

Page 49

The header layout is the same for each of the file specifications.

No edits are required from the template.

21. Write File Data Records

This data flow task actually writes the data from the EDFacts_Submission table

to the data file as required by the specification. The data flow consists of two

tasks.

Screen 49: Submission Loading, Write File Data Records, Data Flow

The first step reads the data records from the table and the second writes them to

the data file.

The query in the Get Data Records OLEDB Data Source task is unique to each file

specification. For the Membership file (S052) the query is:

 select ROW_NUMBER ()
 over (
 order by
 totalIndicator,
 categorySortOrder,
 stateLEAId,
 stateSchoolId,
 tableName,
 gradeLevel,
 raceEthnicity,
 gender,
 totalIndicator
)
 as FileRecordNumber,
 FIPS,
 stateAgencyNumber,
 stateLEAId,
 stateSchoolId,
 tableName,
 gradeLevel,
 raceEthnicity,
 gender,
 totalIndicator,
 explanation,
 totalCount
 from EDFacts_Submission.S052
 where reportLevel = 'SCH'
 and schoolYear = ?

The first field in the query gets the unique line number for each record in the

final file. The totalIndicator and categorySortOrder fields in the Order By clause

Development Guide EDFacts Shared State Solution

Page 50

make sure the records are grouped alphabetically by the category sets first, then

numerically by the subtotals, and finally the Total, if applicable.

There is one parameter in this case, the school year or reporting period covered.

The reportLevel value in the WHERE clause needs to be set for each of the

appropriate reporting levels.

The Write the Data Records Flat File Destination task then send the queried data

to the appropriate file. Make sure the “Overwrite data in the file” checkbox is

NOT checked – we want to append these data to the header record written in the

previous step.

Screen 50: Submission Loading, Write File Data Records, Connection Manager

Map the fields to the appropriate columns in the submission file.

Screen 51: Submission Loading, Write File Data Records, Mappings

This task must be mapped specifically for each specification.

22. Zip Submission Files

The Zip files task zips the specific file for its level and stores it in the designated

location. If a password has been specified for the file in the

Development Guide EDFacts Shared State Solution

Page 51

SubmssionFileCharacteristic table, then that password is applied to the zipped

file.

Screen 52: Submission Loading, Zip Submission Files

No edits are required from the Template.

23. Create Success Email Message Text

This task creates the email message text that will be sent and stores it in the

EmailMessageBody user variable.

Screen 53: Submission Loading, Create Success Email Message General Information

This is hard to read. The ReadOnly variables are:

• User::CsvFileNameLEA

• User::CsvFileNameSchool

• User::CsvFileNameSEA

• System::PackageName

• User::SuccessEmailCCLine

• User::SuccessEmailToLine

• User::ZipFileNameLEA

• User::ZipFileNameSchool

• User::ZipFileNameSEA

The ReadWrite variables are:

• User::EmailAttachments

• User::EmailMessageBody

• User::EmailMessageCCLine

Development Guide EDFacts Shared State Solution

Page 52

• User::EmailMessageSubject

• User::EmailMessageToLine

The script that does this task is:

public void Main()
{
 string strPackageName;
 string strFileNameSchool;
 string strFileNameLEA;
 string strFileNameSEA;
 string strZipFileNameSchool;
 string strZipFileNameLEA;
 string strZipFileNameSEA;
 string strMsgText;
 string strAttachments;

 strPackageName = (string)Dts.Variables["System::PackageName"].Value;
 strFileNameSchool = (string)Dts.Variables["User::CsvFileNameSchool"].Value;
 strFileNameLEA = (string)Dts.Variables["User::CsvFileNameLEA"].Value;
 strFileNameSEA = (string)Dts.Variables["User::CsvFileNameSEA"].Value;
 strZipFileNameSchool = (string)Dts.Variables["User::ZipFileNameSchool"].Value;
 strZipFileNameLEA = (string)Dts.Variables["User::ZipFileNameLEA"].Value;
 strZipFileNameSEA = (string)Dts.Variables["User::ZipFileNameSEA"].Value;

 if (strZipFileNameSchool == "temp")
 {
 strZipFileNameSchool = "";
 strFileNameSchool = "File not submitted at the School level";
 }

 if (strZipFileNameLEA == "temp")
 {
 strZipFileNameLEA = "";
 strFileNameLEA = "File not submitted at the LEA level";
 }

 if (strZipFileNameSEA == "temp")
 {
 strZipFileNameSEA = "";
 strFileNameSEA = "File not submitted at the SEA level";
 }

 Dts.Variables["User::EmailMessageSubject"].Value =
 strPackageName
 + " processing succeeded";

 strMsgText = "The processing of package '" + strPackageName;
 strMsgText += "' succeeded. \n\n";
 strMsgText += "The School file was written to: \n ";
 strMsgText += strFileNameSchool;
 strMsgText += "\n\nThe LEA file was written to: \n ";
 strMsgText += strFileNameLEA;
 strMsgText += "\n\nThe SEA file was written to: \n ";
 strMsgText += strFileNameSEA;
 strMsgText += "\n\nZipped versions of these files have also been ";
 strMsgText += "attached to this email.";
 strMsgText += "\n\nTHEY HAVE NOT YET BEEN SUBMITTED TO USED";

 Dts.Variables["User::EmailMessageBody"].Value = (object)strMsgText;
 Dts.Variables["User::EmailMessageToLine"].Value =
 Dts.Variables["User::SuccessEmailToLine"].Value;
 Dts.Variables["User::EmailMessageCCLine"].Value =
 Dts.Variables["User::SuccessEmailCCLine"].Value;

 strAttachments = strZipFileNameSchool;
 strAttachments += "|";

Development Guide EDFacts Shared State Solution

Page 53

 strAttachments += strZipFileNameLEA;
 strAttachments += "|";
 strAttachments += strZipFileNameSEA;

 Dts.Variables["User::EmailAttachments"].Value = (object)strAttachments;

 Dts.TaskResult = (int)ScriptResults.Success;
}

No edits are required from the template.

24. Global Container Completion

The Global Container exit constraint should be set as a “Completion” constraint

as opposed to the default “Success” constraint. This ensures that we always fall

through to the Update Email Log task.

To change the constraint, right click and select “Completion”. The line should

change to blue from green.

No edits are required from the template.

25. Update Email Log

Just prior to Sending the notification email and exiting, we write the email

components to a log table. This way, if the email send process fails – bad

address, size limit on the email server, etc. – we still have a record of the

processing.

The Execute SQL task uses the following SQL Statement:

insert into EDFacts_Admin.EmailLog (
 EmailDate,
 EmailSubject,
 EmailToLine,
 EmailCCLine,
 EmailMessageBody,
 EmailAttachmentList
)
 values (
 getdate (),
 ?,
 ?,
 ?,
 ?,
 ?
)

This routine takes the following five parameters and writes them to the log:

Development Guide EDFacts Shared State Solution

Page 54

Screen 54: Submission Loading, Update Email Log, Parameter Mapping

No edits are required from the template.

26. Send Notification

The final task is to email the notification to the appropriate folk. The basic set-up

is as follows:

Screen 55: Submission Loading, Send Notification, Mail Settings

But the real work is in the Expressions that set the appropriate values for the

email

Screen 56: Submission Loading, Send Notification, Expressions

No edits are required from the template.

Utility Routines

ef_Utility_BuildFileIdentifier
use [EDFacts];
GO

if exists
 (select *
 from sys.objects
 where object_id =
 OBJECT_ID (N'[EDFacts_Admin].[ef_Utility_BuildFileIdentifier]')
 and type in (N'FN', N'FS', N'FT', N'TF', N'IF'))
 begin
drop function [EDFacts_Admin].[ef_Utility_BuildFileIdentifier];
 end
GO

set ansi_nulls on;
GO

Development Guide EDFacts Shared State Solution

Page 55

set quoted_identifier on;
GO

create function [EDFacts_Admin].[ef_Utility_BuildFileIdentifier] ()
 returns varchar (32)
as
 /**
 * Function that builds a file identifier according to the EDFacts naming
 * conventions
 *
 * @author : Steven King, ESP Solutions Group
 * @version : 1.0 15-Dec-2011
 * @returns : varchar(32) a file identifier consisting of date time and
 * : the user that created the file, e.g.:
 * : 28-Jan-2012 16:24 jYoung
 * @system : EDFacts Shared State Solution
 * Notes : builds the identifier using current datetime and system user.
 * :
 * Revision History
 * ----------- --------------- ---
 * 15-Dec-2011 Steve King Original draft function built
 */
 begin
 declare @now datetime
 declare @fileIdentifier varchar (32)

 set @now = getdate ()

 set @fileIdentifier =
 right ('00'
 + ltrim (rtrim (cast (datepart ("dd", @now) as char (2)))),
 2)
 + '-'
 + case datepart ("mm", @now)
 when 1 then 'Jan'
 when 2 then 'Feb'
 when 3 then 'Mar'
 when 4 then 'Apr'
 when 5 then 'May'
 when 6 then 'Jun'
 when 7 then 'Jul'
 when 8 then 'Aug'
 when 9 then 'Sep'
 when 10 then 'Oct'
 when 11 then 'Nov'
 when 12 then 'Dec'
 end
 + '-'
 + right ('00'
 + ltrim (rtrim (cast (datepart ("yyyy", @now) as char (4)))),
 2)
 + ' '
 + right ('00'
 + ltrim (rtrim (cast (datepart ("hh", @now) as char (2)))),
 2)
 + ':'
 + right ('00'
 + ltrim (rtrim (cast (datepart ("mi", @now) as char (2)))),
 2)
 + ' '
 + +left (
 case charindex ('\', system_user)
 when 0
 then
 system_user
 else
 substring (system_user,
 charindex ('\', system_user) + 1,
 len (system_user)

Development Guide EDFacts Shared State Solution

Page 56

)
 end,
 15)

 return @FileIdentifier
 end

Note: individual states may have an alternative file identifier routine, in which

case this routine will be modified.

ef_Utility_BuildFileName
use [EDFacts];
GO

if exists
 (select *
 from sys.objects
 where object_id =
 OBJECT_ID (N'[EDFacts_Admin].[ef_Utility_BuildFileName]')
 and type in (N'FN', N'FS', N'FT', N'TF', N'IF'))
 begin
drop function [EDFacts_Admin].[ef_Utility_BuildFileName];
 end
GO

set ansi_nulls on;
GO
set quoted_identifier on;
GO

create function [EDFacts_Admin].[ef_Utility_BuildFileName] (
 @specificationNumber varchar (8),
 @reportingPeriod varchar (9),
 @reportingLevel char (3),
 @FileVersion char (7)
)
 returns varchar (25)
as
 /**
 * Function that builds a file name according to the EDFacts naming conventions
 *
 * @author : Steven King, ESP Solutions Group
 * @version : 1.0 15-Dec-2011
 * @param : @specificationNumber The number of the EDFacts file in Sxxx
 * : format
 * @param : @reportingPeriod The school year for which data should
 * : be processed in YYYY-XXXX format, for
 * : example: 2009-2010
 * @param : @reportingLevel The level for the file name: either
 * : ‘SEA’, ‘LEA’, or ‘SCH’
 * @param : @fileVersion the version for this instance of the
 * : file. This comes from the
 * : IncrementFileVersion routine
 * @returns : varchar(25) a filename in the EDFacts format:
 * : <ss><LEV><tablename><Version>.tab
 * @system : EDFacts Shared State Solution
 * Notes : ‘SELECTS’ the appropriate components for the file name from
 * : the configuration tables.
 * :
 * Revision History
 * ----------- --------------- ---
 * 15-Dec-2011 Steve King Original draft function built
 */
 begin
 declare @Now datetime
 declare @FileName varchar (25)
 declare @PostalCode char (2)

Development Guide EDFacts Shared State Solution

Page 57

 declare @HeaderRecordFileName varchar (9)

 set @Now = getdate ()
 set @PostalCode =
 (select top 1
 postalCode
 from EDFacts_Admin.StateConfig
 where reportingPeriod = @reportingPeriod)
 set @HeaderRecordFileName =
 (select headerRecordFileName
 from EDFacts_Admin.SubmissionFileCharacteristic
 where reportingPeriod = @reportingPeriod
 and specificationNumber = @specificationNumber
 and reportLevel = @reportingLevel)
 set @FileName =
 @PostalCode
 + @reportingLevel
 + @HeaderRecordFileName
 + @FileVersion
 + '.tab'

 return @FileName
 end
GO

ef_Utility_IncrementFileVersion
use [EDFacts];
GO

if exists
 (select *
 from sys.objects
 where object_id =
 OBJECT_ID (N'[EDFacts_Admin].[ef_Utility_IncrementFileVersion]')
 and type in (N'FN', N'FS', N'FT', N'TF', N'IF'))
 begin
drop function [EDFacts_Admin].[ef_Utility_IncrementFileVersion];
 end
GO

set ansi_nulls on;
GO
set quoted_identifier on;
GO

create function [EDFacts_Submission].[ef_Utility_IncrementFileVersion] (
 @FileReportingPeriod as varchar (9),
 @SpecificationNumber as varchar (8),
 @ReportingLevel as char (3)
)
 returns varchar (7)
as
 /**
 * Function that builds the file version portion of an EDFacts submission file
 * name
 *
 * @author : Steven King, ESP Solutions Group
 * @version : 1.0 26-Jan-2012
 * @param : @FileReportingPeriod The school year for which data should
 * : be processed in YYYY-XXXX format, for
 * : example: 2009-2010
 * : @SpecificationNumber The number of the specification in
 * : question, in Sxxx format
 * : @ReportingLevel The three character indication of the
 * : level for the
 * : file: SEA, LEA, or SCH
 * @returns : 7 character identifier made up of MM, DD, HH, and a sequence
 * : digit

Development Guide EDFacts Shared State Solution

Page 58

 * @system : EDFacts Shared State Solution
 * Notes : Builds a file version for a submission file and report level.
 * : The file version consists of the month, day, and hour that a
 * : file is created plus a sequence digit. The digit starts at 1
 * : and increments as the report is regenerated with an hour.
 * : The digit flips to “A” and increments through the alphabet if
 * : more than 10 files are created within an hour. We assume
 * : there won’t be more than 36 generations created within an
 * : hour.
 * : Process followed:
 * : 1) get the current date time
 * : 2) build the string MMDDHH from that
 * : 3) lookup in the table SubmissionFileHistory for this file
 * : with that portion of an identifier
 * : 4) either increment the sequence digit if it exists, or
 * : set the sequence digit value to 1 if new day and hour
 * : for that particular file and level
 * : 5) return the identifier value.
 * Revision History
 * ----------- --------------- ---
 * 28-Jan-2012 Steven King Original draft version created
 */

 begin
 declare @Identifier varchar (7);
 declare @Now datetime = getdate ();
 declare @SequenceDigit char (1);

 set @Identifier =
 right ('00' + rtrim (cast (month (@Now) as char (2))), 2)
 + right ('00' + rtrim (cast (day (@Now) as char (2))), 2)
 + right ('00' + rtrim (cast (datepart (hour, @Now) as char (2))), 2)

 select @SequenceDigit = right (fileVersion, 1)
 from EDFacts_Admin.SubmissionFileHistory
 where reportingPeriod = @FileReportingPeriod
 and specificationNumber = @SpecificationNumber
 and reportLevel = @ReportingLevel
 and left (fileVersion, 6) = @Identifier;

 set @SequenceDigit =
 case
 when @SequenceDigit is null then '1'
 when @SequenceDigit = '9' then 'A'
 else char (ascii (@SequenceDigit) + 1)
 end;

 return @Identifier + @Sequencedigit;
 end

Note: individual states may desire an alternate file versioning process, in which

case this routine is customized.

Generic Package Configurations

SSIS configuration information is kept in the database table

EDFacts_Admin.SSIS_Configuration. For each package, there are two

configuration filters that determine which settings to use for the package

execution.

The EDFacts_Admin.SSIS_Configuration table has the following structure:

Development Guide EDFacts Shared State Solution

Page 59

Field Name Data Type

1 ConfigurationFilter nvarchar(255)

2 ConfiguredValue nvarchar(255)

3 PackagePath nvarchar(255)

4 ConfiguredValueType nvarchar(20)

The ConfigurationFilter is an arbitrary value that groups settings together for a

package configuration. In ES3, the value is either “Core Corrections” for values

used by ALL packages, or is set to the package name for the settings specific to a

package and that should be exposed at runtime.

PackagePath is the full name of the value to be set. ConfiguredValue is the value

the PackagePath should use. ConfiguredValueType tells the system how to

interpret the data type for the ConfiguredValue.

For example, if the package “S052 Membership” exposes the value of the variable

“ReportingPeriod” then there is a record in the

EDFacts_Admin.SSIS_Configuration table with the following settings:

Field Name Record Entry

1 ConfigurationFilter S052 Membership

2 ConfiguredValue 2013-2014

3 PackagePath \Package.Variables[User::ReportingPeriod].Properties[Value]

4 ConfiguredValueType String

To set the package configuration settings, select “Package Configurations…”

from the SSIS menu. Make sure that no task in the SSIS Package control flow tab

is currently selected, or the “Package Configuration …” menu option will not be

visible.

The following Package Configuration organizer window will open.

Development Guide EDFacts Shared State Solution

Page 60

Screen 57: Package Configuration Organizer

For each package there are two entries: Core Connections and Package Specific.

“Core Connections” Package Configuration

“Package Specific” Package Configuration

SSIS Package Deployment

The SSIS packages will be deployed the SSIS database instance and executed

from there.

SSIS Logging and Event Handling

There are two kinds of errors we need to manage and log.

The first are errors in the data that mean we cannot create the submission files or

load the submission table. Those types of errors are managed in the data flow

processes above. These are errors that the program managers and content

experts correct.

The second kind are when the SSIS package fails for some reason, whether we

did not account for some bad data and handle it appropriately or some other

operational condition we have not accounted for. These are errors the SSIS

package designer or programmers must correct.

When these latter errors occur, we want to know four things:

1. Which task failed

2. What error code is associated with the failure

3. What error message is associated with the failure

4. If associated with data, which row of data failed

 For these, we add two event handlers to the Generic ETL Package at the package

level.

SSIS_ProcessLog Table

Field Name Data Type Description

eventID int An identity value for every event that is logged.

auditID int

executionInstanceGUID uniqueIdentifier A GUID for the specific running of the package

eventType varchar(20) The name of the event handler that wrote this
record, either: ONError, OnPreExecute, or
OnPostExecute

packageName varchar(50) The name of the package

taskName varchar(50) The name of the Task

Development Guide EDFacts Shared State Solution

Page 61

Field Name Data Type Description

taskID uniqueIdentifier The SSIS unique identifier for the Task

parentID uniqueIdentifier The SSIS unique Identifier for the Parent
container – null for the package task

eventCode int Any error code for the task – 0 if no error

eventDescription varchar(1000) any Error message for the task, null if no error

taskStartTime datetime The date and time the event handler fired

taskStatus varchar(50) the overall status as logged by the event handler

hostMachine varchar(50) the machine upon which the package is
executing – note: this is not the DB against

which the package is running necesarrily.

OnPreExecute Event Handler

The OnPreExecute event handler is a SQL task that populates a row in the

SSIS_ProcessLog table for the start of every task in the package.

Screen 58: Logging and Event Handling, OnPreExecute Event, General Information

There are no parameter values passed into this routine nor any Result Sets

coming out.

The SQL statement is built in an Expression.

Screen 59: Logging and Event Handling, OnPreExecute Event, Expressions

The expression is:

“insert into EDFacts_Admin.SSIS_ProcessLog (
 executionInstanceGUID,
 eventType,
 packageName,
 taskName,
 taskID,

Development Guide EDFacts Shared State Solution

Page 62

 parentID,
 eventCode,
 eventDescription,
 taskStartTime,
 taskStatus,
 hostMachine
)
 values (
 '" + @[System::ExecutionInstanceGUID] + "', --ExecutionInstanceGUID
 'OnPreExecute', --Event_Type
 '" + @[System::PackageName] + "', --Package_Name
 '" + @[System::SourceName] + "', --Task_Name
 '" + @[System::SourceID] + "', --Task_ID
 case
 when '" + @[System::SourceParentGUID] + "' = '' then null
 else '" + @[System::SourceParentGUID] + "'
 end, --Parent_ID
 0, --Event_Code
 '', --Event_Description
 GetDate (), --Task_Start_Time
 'Starting...', --Task_Status
 '" + @[System::MachineName] + "' --Host_Machine
)”

OnPostExecute Event Handler

The OnPostExecute event handler is a SQL task that populates another row in

the SSIS_ProcessLog table at the end of every task in the package.

Screen 60: Logging and Event Handling, OnPostExecute Event, General Information

There are no parameter values passed into this routine nor any Result Sets

coming out.

The SQL statement is built in an Expression.

Screen 61: Logging and Event Handling, OnPostExecute Event, Expressions

The expression is:

Development Guide EDFacts Shared State Solution

Page 63

“insert into EDFacts_Admin.SSIS_ProcessLog (
 executionInstanceGUID,
 eventType,
 packageName,
 taskName,
 taskID,
 parentID,
 eventCode,
 eventDescription,
 taskStartTime,
 taskStatus,
 hostMachine
)
 values (
 '" + @[System::ExecutionInstanceGUID] + "', --ExecutionInstanceGUID
 'OnPostExecute', --Event_Type
 '" + @[System::PackageName] + "', --Package_Name
 '" + @[System::SourceName] + "', --Task_Name
 '" + @[System::SourceID] + "', --Task_ID
 case
 when '" + @[System::SourceParentGUID] + "' = '' then null
 else '" + @[System::SourceParentGUID] + "'
 end, --Parent_ID
 0, --Event_Code
 '', --Event_Description
 GetDate (), --Task_Start_Time
 'Complete', --Task_Status
 '" + @[System::MachineName] + "' --Host_Machine
)”

OnError Event Handler

The OnError event handler fires once for the current task that failed, and once

more for each parent object, and finally also at the package level. Usually, only

the first message gives enough information to be useful, but just to be sure we

record them all.

The OnError event handler consists of two tasks:

Screen 62: Logging and Event Handling, OnError Event, Data Flows

One task updates the Email message body that an error occurred and the error

code and description of the error. The second task writes a record into the

SSIS_ProcessLog table with the error information.

The Write Email message Body task is a Script task with three parameters

coming in: the Task name, the error code, and the error description

Screen 63: Logging and Event Handling, OnError Event, Update Email Script Information

Development Guide EDFacts Shared State Solution

Page 64

The script appends this information to the EmailMessageBody user variable.

// onError Set Error Messages and Flags
public void Main()
{

 //Append error message to email error message variable for
 //email at end of package
 Dts.Variables["User::EmailMessageBody"].Value =
 Dts.Variables["User::EmailMessageBody"].Value
 + "\n\nTask Name:"
 + Dts.Variables["System::TaskName"].Value
 + "\n Error Code: "
 + Dts.Variables["System::ErrorCode"].Value.ToString()
 + "\n Error Description: "
 + Dts.Variables["System::ErrorDescription"].Value;
 Dts.TaskResult = (int)ScriptResults.Success;
}

The Error Logging task is a SQL task that inserts a record into the

SSIS_ProcessLog table.

Screen 64: Logging and Event Handling, OnError Event, General Information

There are no parameter values passed into this routine nor any Result Sets

coming out.

The SQL statement is built in an Expression.

Screen 65: Logging and Event Handling, OnError Event, Expressions

The expression is:

“insert into EDFacts_Admin.SSIS_ProcessLog (
 executionInstanceGUID,
 eventType,
 packageName,
 taskName,
 taskID,
 parentID,
 eventCode,

Development Guide EDFacts Shared State Solution

Page 65

 eventDescription,
 taskStartTime,
 taskStatus,
 hostMachine
)
 values (
 '" + @[System::ExecutionInstanceGUID] + "', --ExecutionInstanceGUID
 'OnError', --Event_Type
 '"+ @[System::PackageName] + "', --Package_Name
 '"+ @[System::SourceName] + "', --Task_Name
 '"+ @[System::SourceID] + "', --Task_ID
 case
 when '"+ @[System::SourceParentGUID] + "' = '' then null
 else '"+ @[System::SourceParentGUID] + "'
 end, --Parent_ID
 '"+ (DT_STR, 15, 1252)@[System::ErrorCode] + "', --Event_Code
 '"+ @[System::ErrorDescription] + "', --Event_Description
 GetDate (), --Task_Start_Time
 'ErrorsOccurred', --Task_Status
 '"+ @[System::MachineName] + "' --Host_Machine
)”

Validation Reports – Submission Tables

The US Education Department has documented a set of business rules that they

use the validate EDFacts submissions. The business rules document is a

spreadsheet. ED defines the columns in this spreadsheet as:

Below are the definitions of each column included in the spreadsheet portion of

the guide.

􀂃Rule ID. All business rules are assigned a unique ID number. You can use the

Rule ID column to locate more information about edits triggered by a file

submission. The letters at the start of the Rule ID indicate the type of edit.

Edits that start with “ER” are either format or validation edits.

Edits that start with an “M” are the edits that replaced CCD’s match checks.1

Edits that start with an “S” are submission edits.

􀂃Error Type. This column denotes the type of error that was found.

Format and Validation Errors. Format and validation errors both occur before

the data are loaded into the staging database and are only reported through the

Transmission Status Reports. Format errors occur when ESS cannot translate the

file from its submitted format or cannot tell what format the file is in (xml, csv,

txt, or tab). Validation errors usually identify invalid values when a permitted

code set is provided.

Submission Errors. These errors occur in the staging database after the file has

passed all format and validation edits. These errors ensure that submitted data

meet or exceed an acceptable level of reasonability by checking the values

entered in a field against other similar values in the same file or across files. They

appear on the Submission Error Report and, for files that provide CCD data, on

the Edit Reports.

Match Errors. These are a type of submission error and appear in the ESS match

report (Submission Error Report page – Reports tab – Match Error Report row).

They align with those formerly conducted by NCES in support of the Common

Core Data (CCD) collection. All of these errors apply to file 029, Directory.

Development Guide EDFacts Shared State Solution

Page 66

􀂃General Edit. The general edit column denotes if the edit applies generally to

more than one file specification. Because general edits apply to multiple files,

these edits do not include a list of the associated file specifications. Examples of

general edits are:

“ER-2 Format Error (Data is not in correct delimited (csv/tab) file format)” which

applies to any csv or tab delimited file that comes in through ESS, and

“ER-37 Validation Error (The Category Code <value>, which was submitted for

the reported <Table Type Name>, is not a Permitted Code)” applies to any file

with specific permitted values.

Edit Type. This column tells you if the result of the edit is an error or a warning.

Errors must be corrected. Once the error is corrected, it will no longer appear on

the error report. Warnings should be investigated. If the data are determined to be

incorrect, they should be corrected with a resubmission. If the data are

determined to be correct, no update is needed.

Year to Year Change Edit. The year to year change flag lets you know if the

edit compares prior year data to current year data.

Level (SEA, LEA, School). The reporting level to which the business rule

applies - state education agency (SEA column), local education agency (LEA

column), or school (School column). Some business rules apply to multiple

levels. If, for instance, a business rule applies to the SEA file and the LEA file

only, both the SEA and LEA columns will contain the value “Yes”, but the

School column will contain “No”.

Error Message. This is the message text displayed on the ESS page or

spreadsheet where the error or warning is provided.

Definition. The detailed description of the business rule including illustrative

examples, where appropriate. Note that some rules have multiple components.

That is, they apply to more than one data element on a single file. For instance, a

file can be flagged with error ER-28 when either the mailing street address or the

city is invalid in a submitted file. The Definition and Edit Logic can help you

determine when this is true.

Edit Logic. The technical description of the business rule. This description

includes the detailed logic employed in the business rule. Examples of values that

display in this field include maximum values, checks for number of digits in a zip

code, and comparisons of student counts.

Steward. The office responsible for the edit.

First ESS Release. Identifies the ESS version that first included the edit. This

field helps users identify new edits and edits that will be implemented in a future

release.

File Spec Used #1, #2…#7. Except for general edits, these columns identify the

file(s) associated with the edit. Because some business rules draw on information

from multiple EDEN files, several columns are needed to provide this

information. For example, submission error S002-R17--'Children with disabilities

student count represents more than 25% of total LEA student population’—uses

data from several files. For this edit the File Spec Used columns lists files 002

(Children with Disabilities, School Age) and 089 (Children with Disabilities,

Early Childhood) because the edit applies to the total number of children with

disabilities reported on both of these files. It also lists file 052 (Membership)

because the edit compares the total IDEA student count to the LEA’s total student

Development Guide EDFacts Shared State Solution

Page 67

membership. Because edits sometimes use data from more than one file, sorting

the spreadsheet by ‘File Spec Used 1’ will not always identify all the edits that

apply to a specific file. Users should also perform the sort separately on each of

the other file spec used columns.

December 2011 EDFacts 2011-11 Business Rules Guide Version 8.0 2

We are implementing these validation checks in the EDFacts Shared Solution.

Each individual rule or set of rules is implemented in its own stored procedure.

The ES3 has an EDFacts_Validation.ValidationResults table that stores the results

of the validation checks.

Pos Column Name Data Type

1 SubmissionNumber varchar(8)

2 RuleNumber varchar(9)

3 ReportingPeriod varchar(9)

4 Severity varchar(7)

5 SEA_ID varchar(15)

6 LEA_ID varchar(15)

7 SchoolID varchar(15)

8 ErrorDescription varchar(250)

9 AdditionalInfo varchar(1000)

10 ExecutionTime datetime

A sample routine is shown below. The routine selects any bad records and

inserts them into the ValidationResults table. Each routine is named

efbr_<submission number>_<rule number>. The “efbr” is short for “EDFacts

Business Rule.”

create procedure [EDFacts_Validation].[efbr_S052_R17]
 @ReportingPeriod as varchar (9)
as
 /**
 * Validates the S052 Membership file using the EDFacts System business rule S052_R17.
 *
 * @author : Steven King, ESP Solutions Group
 * @version : 1.0 11-Jun-2012
 * @param : @ReportingPeriod The school year for which data should be
 * : processed in YYYY-XXXX format, for
 * : example: 2009-2010
 * @system : State Collaborative EDFacts Management System
 * returns : Table with the following fields:
 * : Submission Number - Always 'S052' in this file
 * : RuleNumber - The EDFacts Business Rules Rule ID
 * : Severity - The severity of the error - 'Error'
 * : or 'Warning'
 * : LEA_ID - State LEA ID, blank for SEA level
 * : errors
 * : SchoolID - State School ID, blank for SEA and
 * : LEA level errors
 * : ErrorDescription - A description of the error
 * : AdditionalInfo - Additional information to spot the
 * : specific problem
 *
 * Revision History

Development Guide EDFacts Shared State Solution

Page 68

 * ----------- --------------- ---
 * 11-Jun-2012 Steven King Original file created.
 */
 begin
 insert into
 EDFacts_Validation.validationResults (
 SubmissionNumber,
 RuleNumber,
 ReportingPeriod,
 severity,
 LEA_ID,
 SchoolID,
 ErrorDescription,
 AdditionalInfo
)
 /* S052-R17 - State Total Less than Sum of LEA totals*/

 select
 'S052' as SubmissionNumber,
 'S052-R17' as RuleNumber,
 @ReportingPeriod as ReportingPeriod,
 'Error' as Severity,
 '' as LEA_ID,
 '' as SchoolID,
 'State total less than sum of LEA totals' as ErrorDescription,
 '' as AdditionalInfo
 from
 EDFacts_Submission.S052
 where
 reportLevel = 'SEA'
 and schoolYear = @ReportingPeriod
 and isnull (gradeLevel, '') = ''
 and isnull (raceEthnicity, '') = ''
 and isnull (sex, '') = ''
 and totalIndicator = 'Y'
 and totalCount <
 (select
 sum (totalCount)
 from
 EDFacts_Submission.S052
 where
 reportLevel = 'LEA'
 and schoolYear = @ReportingPeriod
 and isnull (gradeLevel, '') = ''
 and isnull (raceEthnicity, '') = ''
 and isnull (sex, '') = ''
 and totalIndicator = 'Y')
 end

Then for each submission file, there is a “master” store procedure that calls all

the individual routines associated with that submission file. Each of these has a

format similar to the following.

create procedure [EDFacts_Validation].[ef_Validation_S052]
 @ReportingPeriod as varchar (9)
as
 /**
 * Validates the S052 Membership file using the EDFacts System business rules.
 *
 * @author : Steven King, ESP Solutions Group
 * @version : 1.0 11-Jun-2012
 * @param : @ReportingPeriod The school year for which data should be
 * : processed in YYYY-XXXX format, for
 * : example: 2009-2010
 * @system : State Collaborative EDFacts Management System
 * returns : Table with the following fields:
 * : Submission Number - Always 'S052' in this file

Development Guide EDFacts Shared State Solution

Page 69

 * : RuleNumber - The EDFacts Business Rules Rule ID
 * : Severity - The severity of the error - 'Error'

 * : or 'Warning'
 * : LEA_ID - State LEA ID, blank for SEA level
 * : errors
 * : SchoolID - State School ID, blank for SEA and
 * : LEA level errors
 * : ErrorDescription - A description of the error
 * : AdditionalInfo - Additional information to spot the
 * : specific problem
 *
 * Revision History
 * ----------- --------------- --
 * 11-Jun-2012 Steven King
 */
 begin
 delete from edfacts_submission.validationResults
 where submissionNumber = 'S052'
 and reportingPeriod = @ReportingPeriod

 exec EDFacts_Submission.efbr_S052_R01_to_R16
 @ReportingPeriod = @ReportingPeriod
 exec EDFacts_Submission.efbr_S052_R17 @ReportingPeriod = @ReportingPeriod
 exec EDFacts_Submission.efbr_S052_R18 @ReportingPeriod = @ReportingPeriod
 exec EDFacts_Submission.efbr_S052_R19 @ReportingPeriod = @ReportingPeriod
 exec EDFacts_Submission.efbr_S052_R20 @ReportingPeriod = @ReportingPeriod
 exec EDFacts_Submission.efbr_S052_R21 @ReportingPeriod = @ReportingPeriod
 exec EDFacts_Submission.efbr_S052_R22 @ReportingPeriod = @ReportingPeriod
 exec EDFacts_Submission.efbr_S052_R23 @ReportingPeriod = @ReportingPeriod
 exec EDFacts_Submission.efbr_S052_R25 @ReportingPeriod = @ReportingPeriod
 exec EDFacts_Submission.efbr_S052_R28_to_R40
 @ReportingPeriod = @ReportingPeriod
 exec EDFacts_Submission.efbr_S052_R41 @ReportingPeriod = @ReportingPeriod
 exec EDFacts_Submission.efbr_S052_R42 @ReportingPeriod = @ReportingPeriod
 exec EDFacts_Submission.efbr_S052_R56 @ReportingPeriod = @ReportingPeriod
 exec EDFacts_Submission.efbr_S052_R60 @ReportingPeriod = @ReportingPeriod
 end

Development Guide EDFacts Shared State Solution

Page 70

Validation Reports – Staging Tables

System Monitoring and Management

Web Management System

Individual Client Configuration

Client Configuration Data Tables

There are five tables in the EDFacts_Admin schema that maintain configuration

information for individual clients.

After installing the database and copying the appropriate files into the right

places, the data in these file tables will need to be edited and updated.

The beginning of this section describes each of those configuration tables. This

followed by a section on the configuration of SSIS for a particular installation. A

single state may have multiple installations, development and production for

example.

The next section contains a checklist for the components that must be developed

and customized for a particular client installation.

EDFacts_Admin.StateConfig Table

This table has a record for each school year (reporting period) with the details for

this specific state. The main field of interest is the storage directory root path

that identifies the directory under which all the submission files will be stored

for a particular reporting period.

Field Name Data Type Description

reportingPeriod varchar(9) The 9 character representation of the school
year or reporting period represented. Formatted
as YYYY-XXXX, for example ‘2011-2012’

stateName varchar(20) The name of the state

postalCode char(2) The state’s 2 character USPS abbreviation

stateFIPSCode char(2) The two-digit Federal Information Processing
Standards (FIPS) for the state

Development Guide EDFacts Shared State Solution

Page 71

Field Name Data Type Description

stateAgencyNumber char(2) The State Agency Identifier is assigned by ESS
and the only valid value currently available is
“01” for the SEA. In the future, additional state
agencies may be able to submit data directly to
ESS and they will receive different State Agency
Identifiers. This ID cannot be updated through
this file.

storageDirectoryRootPath varchar(200) The fully qualified path to the root working
directory for files for this reporting period. Drive
letters are mapped on the system where the
SSIS packages are executed – i.e. the database
server.

emailFromLine varchar(100) the address to be used for the “From:” line in
notification emails

stateLogoMIMEType varchar(25) The image type of the state Logo, e.g.
“image/jpeg” or “image/gif”

stateLogo varbinary(8000) The state Logo image binary data

EDFacts_Admin.StateCharacteristic Table

This table has a records for each school year (reporting period) with the

characteristics for the specific state stored as name/value pairs. The table includes

characteristics like whether the state hasCharterSchools or whether grades 13 or

Ungraded should be included as options.

Field Name Data Type Description

reportingPeriod varchar(9) The 9 character representation of the school year
or reporting period represented. Formatted as
YYYY-XXXX, for example ‘2011-2012’

name varchar(100)

value varchar(100)

EDFacts_Admin.SubmissionFileCharacteristic Table

This table has configuration information for each submission file and reporting

period. These data are used when creating the submission files.

Field Name Data Type Description

reportingPeriod varchar(9) The 9 character representation of the school
year or reporting period represented. Formatted
as YYYY-XXXX, for example ‘2011-2012’

specificationNumber varchar(8) The reference used for the specification number,
also the name of the table in the
EDFacts_Submission schema. Most specs its
simple the spec number like “S052”. In some
cases, the different levels are enough different

wo warrant their own table, like “S029_LEA”

reportLevel char(3) SEA, LEA, or SCH

headerRecordFileName varchar(9) the portion of the filename in the header rec
specific to this file

headerRecordFileType varchar(150) The filetype field of the header rec for this
specificatrion

Development Guide EDFacts Shared State Solution

Page 72

Field Name Data Type Description

dataRecordTableName varchar(20) The table name to be used in the data records
for this file

defaultFilePath varchar(100) The default directory location where the
submission files are to be stored – relative to the
storageDirectoryRootPath from the stateConfig

table.

lastRunDate datetime The date and time this submission file was last
created.

Prior to 2011-12, ED had separate specification document for CSV files and XML

files and referred to the files as with Nxxx or Xxxx depending on whether the file

was Non-XML or XML. Beginning with the 2011-12 school year, they combined

the specification documents and named them Cxxx. To avoid confusion (or

perhaps to contribute to it) this ES3 system refers to the submission files as Sxxx.

EDFacts_Admin.StateCodeTranslation Table

This table is used to map the state codes to the codes used in the EDFacts

submission files. As the submission files are created, a code translation takes

place using the information from this table.

Field Name Data Type Description

reportingPeriod varchar(9) The 9 character representation of the school year
or reporting period represented. Formatted as
YYYY-XXXX, for example ‘2011-2012’

codeSetName varchar(20) The name of the code set being translated. This
name should be unique in the system for a given
reporting period

stateCode varchar(25) The state code found in the staging tables and or
source system

EDFactsCode varchar(15) The EDFacts system code to be used in the
submission file

description varchar(1000) a description, definition, or other note for the
particular option.

EDFacts_Admin.SSIS_Configuration Table

This is the standard SSIS configuration table that SSIS uses under database

configuration.

Field Name Data Type Description

ConfigurationFilter nvarchar(255)

ConfiguredValue nvarchar(255)

PackagePath nvarchar(255)

ConfiguredValueType nvarchar(20)

Managing State Code Set Translation Values

Development Guide EDFacts Shared State Solution

Page 73

declare @reportingPeriod varchar(9) = ?

delete from EDFacts_Admin.StateCodeTranslation
 where codeSetName in ('Age (All)',
 'Age/Grade (All)',
 'Age/Grade (w/o under 3)',
 'Age/Grade (w/o Out of School)',
 'Age Grade (3-5/K-12)',
 'Age Group',
 'Grade Level (Assessment)',
 'Grade Level (Assessment - Science)',
 'Grade Level (Basic)',
 'Grade Level (Dropouts)',
 'Grade Level (Membership)')
 and reportingPeriod = @reportingPeriod

insert into EDFacts_Admin.StateCodeTranslation
 (reportingPeriod, codeSetName, stateCode, EDFactsCode, description)
values -- -- --
 -- region Age (All)
 (@reportingPeriod, 'Age (All)', '3TO5', '3TO5', ''),
 (@reportingPeriod, 'Age (All)', '6', '6', ''),
 (@reportingPeriod, 'Age (All)', '7', '7', ''),
 (@reportingPeriod, 'Age (All)', '8', '8', ''),
 (@reportingPeriod, 'Age (All)', '9', '9', ''),
 (@reportingPeriod, 'Age (All)', '10', '10', ''),
 (@reportingPeriod, 'Age (All)', '11', '11', ''),
 (@reportingPeriod, 'Age (All)', '12', '12', ''),
 (@reportingPeriod, 'Age (All)', '13', '13', ''),
 (@reportingPeriod, 'Age (All)', '14', '14', ''),
 (@reportingPeriod, 'Age (All)', '15', '15', ''),
 (@reportingPeriod, 'Age (All)', '16', '16', ''),
 (@reportingPeriod, 'Age (All)', '17', '17', ''),
 (@reportingPeriod, 'Age (All)', '18', '18', ''),
 (@reportingPeriod, 'Age (All)', '19', '19', ''),
 (@reportingPeriod, 'Age (All)', '20', '20', ''),
 (@reportingPeriod, 'Age (All)', '21', '21', ''),
 -- end region
 -- -- --
 -- region Age/Grade (All)
 (@reportingPeriod, 'Age/Grade (All)', 'UNDER3', 'UNDER3', ''),
 (@reportingPeriod, 'Age/Grade (All)', '3TO5NOTK', '3TO5NOTK', ''),
 (@reportingPeriod, 'Age/Grade (All)', 'KG', 'KG', ''),
 (@reportingPeriod, 'Age/Grade (All)', 'KM', 'KG', ''),
 (@reportingPeriod, 'Age/Grade (All)', 'KA', 'KG', ''),
 (@reportingPeriod, 'Age/Grade (All)', '01', '01', ''),
 (@reportingPeriod, 'Age/Grade (All)', '02', '02', ''),
 (@reportingPeriod, 'Age/Grade (All)', '03', '03', ''),
 (@reportingPeriod, 'Age/Grade (All)', '04', '04', ''),
 (@reportingPeriod, 'Age/Grade (All)', '05', '05', ''),
 (@reportingPeriod, 'Age/Grade (All)', '06', '06', ''),
 (@reportingPeriod, 'Age/Grade (All)', '07', '07', ''),
 (@reportingPeriod, 'Age/Grade (All)', '08', '08', ''),
 (@reportingPeriod, 'Age/Grade (All)', '09', '09', ''),
 (@reportingPeriod, 'Age/Grade (All)', '1', '01', ''),
 (@reportingPeriod, 'Age/Grade (All)', '2', '02', ''),
 (@reportingPeriod, 'Age/Grade (All)', '3', '03', ''),
 (@reportingPeriod, 'Age/Grade (All)', '4', '04', ''),
 (@reportingPeriod, 'Age/Grade (All)', '5', '05', ''),
 (@reportingPeriod, 'Age/Grade (All)', '6', '06', ''),
 (@reportingPeriod, 'Age/Grade (All)', '7', '07', ''),
 (@reportingPeriod, 'Age/Grade (All)', '8', '08', ''),
 (@reportingPeriod, 'Age/Grade (All)', '9', '09', ''),
 (@reportingPeriod, 'Age/Grade (All)', '10', '10', ''),
 (@reportingPeriod, 'Age/Grade (All)', '11', '11', ''),
 (@reportingPeriod, 'Age/Grade (All)', '12', '12', ''),
 (@reportingPeriod, 'Age/Grade (All)', 'OOS', 'OOS', ''),
 (@reportingPeriod, 'Age/Grade (All)', 'UG', 'UG', ''),
 (@reportingPeriod, 'Age/Grade (All)', '?', '<ignore>', ''),

Development Guide EDFacts Shared State Solution

Page 74

 (@reportingPeriod, 'Age/Grade (All)', 'UNKNOWN', 'UG', ''),
 --end region

Individual Client Development and Customization Checklist

• File identifier routine

• File version routine

Managing Client Contributions

<Insert description of how we will manage client contributions to the EDFacts Shared

State Solution >

Standards and Best Practices

Naming conventions

T-SQL procedure naming and comment conventions

